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We compare two frequently discussed competing structures for a stable �̄��̄�𝑢𝑑 tetraquark with
quantum numbers 𝐼 (𝐽𝑃) = 0(1+) by considering a meson-meson as well as a diquark-antidiquark
creation operator. We treat the heavy antiquarks as static with fixed positions and find diquark-
antidiquark dominance for �̄��̄� separations 𝑟 <∼ 0.2 fm, while for 𝑟 >∼ 0.5 fm the system essentially
corresponds to a pair of 𝐵 mesons. For the meson-meson to diquark-antidiquark ratio of the
tetraquark we obtain around 58%/42%.
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1. Introduction

Anti-heavy-anti-heavy-light-light tetraquarks �̄��̄�𝑞𝑞 are expected to be hadronically stable, if
the antiquarks are sufficiently heavy (see e.g. Refs. [1–5]). This was confirmed numerically by
lattice QCD computations using the Born-Oppenheimer approximation [6–10] as well as by full
lattice QCD computations using four quarks of finite mass [11–15].

In this work (see also Ref. [16]) we continue our Born-Oppenheimer based lattice QCD studies
and explore the structure of a theoretically predicted �̄��̄�𝑢𝑑 tetraquark with quantum numbers
𝐼 (𝐽𝑃) = 0(1+). In particular we try to clarify, whether it resembles a meson-meson system or rather
a diquark-antidiquark system. Experimentally, this tetraquark has not yet been observed, but its
discovery potential is discussed in Refs. [17, 18].

2. Basic principle of our approach and summary of previous work

The Born-Oppenheimer approximation [19, 20] can be used to study �̄��̄�𝑞𝑞 tetraquarks in a two
step approach. In a first step, one treats the heavy �̄� quarks as static quarks �̄� and computes �̄��̄�

potentials in the presence of two lighter quarks 𝑞𝑞 (𝑞 ∈ {𝑢, 𝑑, 𝑠}) using lattice QCD (see e.g. Refs.
[7, 9, 21–24]). Then, in a second step, the resulting potentials are inserted into the Schrödinger
equation to study the dynamics of the heavy �̄� quarks. Using standard techniques from quantum
mechanics and scattering theory one can check, whether these potentials are sufficiently attractive
to host bound states or resonances, which indicate the existence of �̄��̄�𝑞𝑞 tetraquarks (see e.g. Refs.
[6, 8, 10, 25]).

At large �̄��̄� separation 𝑟 , the four quarks will form two static-light mesons �̄�𝑞 and �̄�𝑞 and
the corresponding potential is equal to the sum of the two meson masses. A �̄��̄� potential in the
presence of two lighter quarks 𝑞𝑞 depends on

• the light quark flavors (i.e. isospin and strangeness),

• the light quark spins (the static quark spins are irrelevant),

• parity, which can be related to the types of the mesons (negative parity 𝐵 and 𝐵∗ ground state
mesons and positive parity 𝐵∗

0 and 𝐵∗
1 excitations).

Thus, there are quite a number of different channels, which were computed and are discussed in
detail in Ref. [9]. Some of the corresponding potentials are attractive, others are repulsive, and they
differ in their asymptotic values at large 𝑟 .

To determine �̄��̄� potentials, one has to compute temporal correlation functions of suitably
chosen creations operators. One possibility is to use operators of meson-meson type,

O𝐵𝐵 = 2(CΓ)𝐴𝐵 (CΓ̃)𝐶𝐷

(
�̄�𝑎

𝐶 (−r/2)𝜓 ( 𝑓 )𝑎
𝐴

(−r/2)
) (
�̄�𝑏

𝐷 (+r/2)𝜓 ( 𝑓 ′)𝑏
𝐵

(+r/2)
)
, (1)

where C = 𝛾0𝛾2 is the charge conjugation matrix, 𝐴, 𝐵, 𝐶, 𝐷 denote spin indices, 𝑎, 𝑏 color indices
and 𝜓 ( 𝑓 ) represent light quark field operators of flavor 𝑓 . The most attractive potential corresponds
to quantum numbers (𝐼, | 𝑗𝑧 |, 𝑃, 𝑃𝑥) = (0, 0, +,−) (for a detailed discussion see Ref. [9]) and can
be obtained by choosing 𝜓 ( 𝑓 )𝜓 ( 𝑓 ′) = 𝑢𝑑 − 𝑑𝑢, Γ = (1 + 𝛾0)𝛾5 and Γ̃ ∈ {(1 + 𝛾0)𝛾5 , (1 + 𝛾0)𝛾 𝑗}.
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Lattice data points computed on 2-flavor ETMC gauge link configurations (see Table 1 and Refs.
[26–28]) are shown in Figure 1 (left plot). These results are consistently parameterized by

𝑉 (𝑟) = −𝛼

𝑟
exp

(
−

(
𝑟

𝑑

) 𝑝)
+𝑉0 (2)

with 𝛼 = 0.293, 𝑑 = 0.356 fm and 𝑝 = 2.74 (the constant 𝑉0 contains the self energy of the static
quarks and is physically irrelevant; within statistical errors 𝑉0 = 2𝑚sl, where 𝑚sl is the mass of the
lightest static-light meson).

ensemble 𝛽 𝑎 in fm (𝐿/𝑎)3 × 𝑇/𝑎 𝜅 𝜇 𝑚PS in MeV
B40.24 3.90 0.079(3) 243 × 48 0.160856 0.004 340(13)
C30.32 4.05 0.063(2) 323 × 64 0.157010 0.003 325(10)

Table 1: ETMC gauge link ensembles used in this work (for details see Refs. [26–28]).

Figure 1: (left) Lattice QCD results for the most attractive �̄��̄� potential with quantum numbers
(𝐼, | 𝑗𝑧 |, 𝑃, 𝑃𝑥) = (0, 0, +,−) together with the parameterization (2). (right) Radial probability density
of the �̄��̄� separation 𝑝𝑟 (𝑟) = 4𝜋 |𝑅(𝑟) |2. (The results shown in the two plots correspond to ensemble B40.24
and are taken from Ref. [6].)

When solving the radial Schrödinger equation for that potential,(
1
𝑚𝑏

(
− 𝑑2

𝑑𝑟2 + 𝐿 (𝐿 + 1)
𝑟2

)
+𝑉 (𝑟) − 2𝑚sl

)
𝑅(𝑟) = 𝐸𝑅(𝑟) (3)

(𝑚𝑏 denotes the 𝑏 quark mass, which can be estimated e.g. by the mass of the 𝐵 meson), one finds
for orbital angular momentum 𝐿 = 0 a bound state with binding energy −𝐸 = 38(18) MeV [6].
The radial probability density of that state, 𝑝𝑟 (𝑟) = 4𝜋 |𝑅(𝑟) |2, is shown in Figure 1 (right plot)
indicating that the �̄��̄� separation is typically between 0.1 fm and 0.5 fm. Using the Pauli principle
for the �̄� quarks one can conclude that the quantum numbers of the corresponding �̄��̄�𝑢𝑑 tetraquark
are 𝐼 (𝐽𝑃) = 0(1+).
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3. Structure of the �̄��̄�𝑢𝑑 tetraquark

To investigate the structure of the �̄��̄�𝑢𝑑 tetraquark, we consider two significantly different
creation operators, which both probe the (𝐼, | 𝑗𝑧 |, 𝑃, 𝑃𝑥) = (0, 0, +,−) sector: a meson-meson (or
𝐵𝐵) operator as given in Eq. (1) and a diquark-antidiquark (or 𝐷𝑑) operator

O𝐷𝑑 = −𝜖𝑎𝑏𝑐
(
𝜓
( 𝑓 )𝑏
𝐴

(0) (CΓ)𝐴𝐵𝜓 ( 𝑓 ′)𝑐
𝐵

(0)
)

𝜖𝑎𝑑𝑒
(
�̄�

𝑓

𝐶
(−r/2)𝑈 𝑓 𝑑 (−r/2; 0) (CΓ̃)𝐶𝐷�̄�

𝑔

𝐷
(+r/2)𝑈𝑔𝑒 (+r/2; 0)

)
(4)

with 𝑈 denoting straight parallel transporters. We choose the same 𝜓 ( 𝑓 )𝜓 ( 𝑓 ′) , Γ and Γ̃ as in Eq.
(1). With these two operators we computed the 2 × 2 correlation matrix

𝐶 𝑗𝑘 (𝑡) =
〈
O†

𝑗
(𝑡2)O𝑘 (𝑡1)

〉
= 〈Ω|O†

𝑗
(𝑡2)O𝑘 (𝑡1) |Ω〉 = 〈Φ 𝑗 (𝑡2) |Φ𝑘 (𝑡1)〉, (5)

where |Ω〉 denotes the vacuum and |Φ 𝑗〉 = O 𝑗 |Ω〉 are meson-meson ( 𝑗 = 𝐵𝐵) and diquark-
antidiquark ( 𝑗 = 𝐷𝑑) trial states.

3.1 𝐵𝐵 and 𝐷𝑑 percentages as functions of the �̄��̄� separation for the anti-static-anti-static-
light-light system

In this subsection we focus on the �̄��̄�𝑢𝑑 system with static antiquarks with fixed positions.
We defined the trial state

|Φ𝑏,𝑑〉 = 𝑏 |Φ𝐵𝐵, (1+𝛾0)𝛾5〉 + 𝑑 |Φ𝐷𝑑, (1+𝛾0)𝛾5〉 (6)

and determined the coefficients 𝑏 and 𝑑 such that the trial state is as similar to the ground state as
possible. This amounts to minimizing effective energies

𝑉eff
𝑏,𝑑 (𝑟, 𝑡) = −1

𝑎
log

(
𝐶[𝑏,𝑑 ] [𝑏,𝑑 ] (𝑡)

𝐶[𝑏,𝑑 ] [𝑏,𝑑 ] (𝑡 − 𝑎)

)
, 𝐶[𝑏,𝑑 ] [𝑏,𝑑 ] (𝑡) =

(
𝑏

𝑑

)†
𝑗

𝐶 𝑗𝑘 (𝑡)
(
𝑏

𝑑

)
𝑘

(7)

with respect to 𝑏 and 𝑑. Since the optimization is independent of the normalization and the relative
phase of 𝑏 and 𝑑, we consider the weights or percentages of 𝐵𝐵 and 𝐷𝑑 defined via

𝑤𝐵𝐵 =
|𝑏 |2

|𝑏 |2 + |𝑑 |2
, 𝑤𝐷𝑑 =

|𝑑 |2
|𝑏 |2 + |𝑑 |2

= 1 − 𝑤𝐵𝐵 . (8)

For fixed �̄��̄� separation 𝑟 the percentages 𝑤𝐵𝐵 and 𝑤𝐷𝑑 depend only weakly on 𝑡 as shown in
Figure 2 for selected separations. To fully eliminate the 𝑡 dependence, we fit constants �̄�𝐵𝐵 (𝑟) and
�̄�𝐷𝑑 (𝑟) to the lattice data points 𝑤𝐵𝐵 (𝑟, 𝑡) and 𝑤𝐷𝑑 (𝑟, 𝑡) for fixed 𝑟, but several 𝑡.

In Figure 3 we show the percentages �̄�𝐵𝐵 and �̄�𝐷𝑑 as functions of the �̄��̄� separation 𝑟 for the
two ensembles B40.24 and C30.32. For 𝑟 <∼ 0.2 fm there is clear diquark-antidiquark dominance.
For 0.2 fm <∼ 𝑟 <∼ 0.3 fm diquark-antidiquark dominance turns into meson-meson dominance. For
0.5 fm <∼ 𝑟 the system is essentially a pair of static-light mesons. There is no significant difference
between the two ensembles and our results for �̄�𝐵𝐵 and �̄�𝐷𝑑 seem to be essentially independent of
the lattice spacing 𝑎.

As an alternative to �̄�𝐵𝐵 and �̄�𝐷𝑑 one can also study eigenvector components obtained from a
standard generalized eigenvalue problem. Results on the 𝐵𝐵 and 𝐷𝑑 percentages are very similar.
For details see Ref. [16].
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Figure 2: 𝑤𝐵𝐵 and 𝑤𝐷𝑑 = 1 − 𝑤𝐵𝐵, the normalized absolute squares of the coefficients of the optimized
trial state for several fixed 𝑟 as functions of 𝑡 for ensemble B40.24. The horizontal red lines indicate fits of
constants �̄�𝐵𝐵 and �̄�𝐷𝑑 .

Figure 3: �̄�𝐵𝐵 and �̄�𝐷𝑑 = 1 − �̄�𝐵𝐵, the normalized absolute squares of the coefficients of the optimized
trial state, as functions of 𝑟 for both ensembles.

3.2 𝐵𝐵 and 𝐷𝑑 percentages for the �̄��̄�𝑢𝑑 tetraquark

The total meson-meson and diquark-antidiquark percentages of the �̄��̄�𝑢𝑑 tetraquark can be
obtained by numerically solving the integrals

%𝐵𝐵 =

∫
𝑑𝑟 𝑝𝑟 (𝑟)�̄�𝐵𝐵 (𝑟) , %𝐷𝑑 =

∫
𝑑𝑟 𝑝𝑟 (𝑟)�̄�𝐷𝑑 (𝑟) = 1 − %𝐵𝐵, (9)

where 𝑝𝑟 (𝑟) = 4𝜋 |𝑅(𝑟) |2 is the radial probability density discussed in section 2 and shown in
Figure 1 (right plot). We find %𝐵𝐵 = 0.58 and %𝐷𝑑 = 0.42. These results indicate that the
�̄��̄�𝑢𝑑 tetraquark with quantum numbers 𝐼 (𝐽𝑃) = 0(1+) is a linear superposition of a meson-meson
system and a diquark-antidiquark system with slight meson-meson dominance. This is supported
by a recent full lattice QCD study of the same system using four quarks of finite mass [14, 29].
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