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Our charm program uses a mixed action with twisted-mass valence quarks over non-perturbatively
improved Wilson sea quarks, in order to study various quantities in a relativistic and manifestly
local framework of full QCD. The sea sector consists of 𝑁f = 2+1 ensembles generated by the CLS
initiative. Taking advantage of open boundary conditions, this allows access to fine ensembles
without topological freezing. Here we focus in particular on our current progress on 𝐷 → 𝐾𝜈𝑙

and 𝐷 → 𝜋𝜈𝑙 semileptonics. Those are first and foremost useful for the computation of the CKM
matrix elements |𝑉𝑐𝑠 | and |𝑉𝑐𝑑 |. We show that all discretisation effects seem to be reasonably
under control with this choice of action, in particular those related to hypercubic lattice artefacts.
Eventually, we obtain preliminary results of the form factors as a very smooth curve on the whole
range of momentum transfer, and in particular the signal at zero 𝑞2 appears to have the potential
to be competitive with earlier published results.
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1. Introduction

Flavour physics, and in particular heavy flavour physics, is nowadays one of the most active
fields of activity in which physics beyond the Standard Model is expected to be observable in the near
future. Additionally, most of the fundamental parameters of the Standard Model are flavour-related,
and extracting them with the highest possible precision is always desirable. Several experiments
are making progress in this direction, such as LHCb and Belle II for the bottom sector or BESIII
for the charm sector. They are matched by similar progresses in the theory, where Lattice Field
Theory is taking more and more importance. However, many challenges are still ahead and this
field is known for some longstanding ’puzzles’ such as inclusive-exclusive tensions.

In this work we are first and foremost trying to extract the CKM matrix elements |𝑉𝑐𝑑 (𝑠) |
from 𝐷 → 𝜋(𝐾)𝜈𝑙 semileptonic decays. Semileptonics are one of the main constraints on these
matrix elements, together with the related leptonic decays studied in another subproject [2]. We
aim at covering directly the full range of decay kinematics, without relying on model-dependant
extrapolations, and doing so with a relativistic and manifestly local lattice action, which offers a
cross-check to the dominating staggered results.

At a previous conference [1] we presented our framework and sketched a strategy. It involves
using a twisted mass term in the valence action, both for the light and heavy quarks, while our CLS
𝑁f = 2+1 configurations contain non-perturbatively improved Wilson light fermions. This gives us
some remnants of automatic𝑂 (𝑎) improvement, guaranteeing the absence of𝑂 (𝑎𝑚𝑐) discretisation
terms, while preserving the non-perturbative improvement in the sea sector, protecting us from
isospin breaking effects in the sea, using only renormalisation factors we already computed, and
last but not least not having to generate dedicated configurations. The parameters of the light sector
are matched as explained in [3].

2. Contraction strategy

Extracting matrix elements typically requires 3-point functions, with asymptotically large time
separation between those points. This must be performed for a reasonable cost and with a sufficiently
good signal-to-noise ratio, since an exact computation of all 3-point functions with naive all-to-all
propagators would be way beyond the capabilities of current supercomputers. We therefore select a
limited subset of time separations between the two mesons, a limited subset of momentum choices
injected through twisted boundary conditions, and then use three well-established techniques which
are stochastic, sequential propagators and the one-hand-trick. Additionally, distance preconditioning
(DP) is used to improve the convergence of heavy quark inversions and avoid floating-point errors,
so that we keep a good signal at moderately large times. This results in contractions such as
Fig. 1. The inversions are performed with deflation in the light sector, so that the light and heavy
propagators have a similar cost.

3. Ensembles and parameters

We use 𝑁f = 2 + 1 CLS ensembles along the 𝑇𝑟 [𝑀] = cst line of physics and with open-
boundary conditions. This choice of boundary is important to have access to very fine ensembles
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𝑙𝑖𝑔ℎ𝑡, ®𝑝𝑠𝑝𝑒𝑐 = ®0

Figure 1: Contraction for the 3-point function. 𝑓1 and 𝑓2 run over any choice of flavour while ®𝑝1 and ®𝑝2 take a
few values between 0 and ±700 MeV. Δ𝑡 is typically fixed to 2 fm, which offers a good compromise between
excited state contamination and signal precision, while staying far enough from the open boundaries in time.
𝜂 represents a 𝑍2 noise while 𝛾5 multiplies the spectator propagator to form a source for the sequential. Each
inversion provides values for any 𝑡 and Γ.

id 𝑎[fm] 𝑁s 𝑁t 𝑚𝜋[MeV] 𝑚𝐾 [MeV] 𝑚𝜋𝐿 Δ𝑡[fm] 𝑎𝜇𝑐

H101 0.086 32 96 420 420 5.8 1.3, 1.5, 2.0 0.22
H102 0.086 32 96 350 440 4.9 1.5 0.22
H105 0.086 32 96 280 460 3.9 1.5, 2.0 0.22

H400 0.076 32 96 420 420 5.2 1.9, 2.7 0.21

H200 0.064 32 96 420 420 4.4 2.0, 2.6 0.18

N300 0.050 48 128 420 420 5.1 1.9, 2.5 0.14

Table 1: Ensembles for which we present preliminary results in this proceedings. A few other ensembles
have been analysed but are not reported here. In most cases only a single 𝑍2 noise has been used.

where the topological tunneling can quickly become an issue, and results in the lattice unnornmalised
charm mass being as low as 0.14, as presented in Tab. 1. This technique allows for even finer
ensembles such as J500 (0.039 fm) which is now available as well and is likely to be added to this
project.

In this proceedings we choose to set the focus on a subset of our ensembles which will have a
particularly strong influence on the final results. It goes along two lines which can in large part be
considered independently:

• First, we need to make sure the discretisation effects are under control, which is easier to look
at along the 𝑚𝑢𝑑 = 𝑚𝑠 line. This is the most important challenge and a test of our framework.

• Then, we also want to see how strong the 𝑀𝜋 dependence is, which is easier to look at on the
coarsest ensembles and without changing any other parameter.

Given the current statistics and our computing resources, the other ensembles are unlikely to provide
more than bounds on other subleading effects of lesser interest.
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4. Parametrisation

The matrix elements between states of the channels of interest are extracted from the 3-point
functions

𝐶𝐷→𝜋,Γ (𝑡,Δ𝑡 ) =
∑︁
𝑚,𝑛

⟨0 | 𝑢̄𝛾5𝑑 | 𝜋, 𝑚⟩⟨𝜋, 𝑚 | 𝑑Γ𝑐 | 𝐷, 𝑛⟩⟨𝐷, 𝑛 | 𝑐𝛾5𝑑 | 0⟩𝑒−𝐸𝜋𝑚 (Δ𝑡−𝑡 )−𝐸𝐷𝑛𝑡 (1)

and we will simply write (in the physical basis of twisted mass fermions)

⟨𝑆⟩ = ⟨𝜋, 𝑚 | 𝑑𝑐 | 𝐷, 𝑛⟩ and ⟨𝑉𝜇⟩ = ⟨𝜋, 𝑚 | 𝑑𝛾𝜇𝑐 | 𝐷, 𝑛⟩. (2)

We use two methods to extract those matrix elements. The main one consist in totally ignoring
all excited states, after having chosen Δ𝑡 sufficiently large, and then building the double ratios

|⟨𝑆⟩|2 = 4𝐸𝐷𝐸𝜋
𝐶𝐷→𝜋,1(𝑡,Δ𝑡 )𝐶𝜋→𝐷,1(𝑡,Δ𝑡 )
𝐶𝐷→𝐷,1(𝑡,Δ𝑡 )𝐶𝜋→𝜋,1(𝑡,Δ𝑡 )��⟨𝑉̂𝜇⟩��2 = 4𝑝𝐷 𝑝𝜋
𝐶𝐷→𝜋,𝛾𝜇 (𝑡,Δ𝑡 )𝐶𝜋→𝐷,𝛾𝜇 (𝑡,Δ𝑡 )
𝐶𝐷→𝐷,𝛾𝜇 (𝑡,Δ𝑡 )𝐶𝜋→𝜋,𝛾𝜇 (𝑡,Δ𝑡 )

,

where the hat stands for the renormalised quantity, which is automatically obtained thanks to charge
conservation in the denominator.

This ratio is symmetric by construction, and the values on the plateau are so strongly auto-
correlated that one can simply take the value at the middle time, rather than performing a fit.

On the ensemble H101 we also generated data for several values of Δ𝑡 and applied a combined
multiexponential fit directly on the 2-point and 3-point functions. The correlated 𝜒2 is computed
for many models and plateaus and fed to a Bayesian average [4]. The comparison will be discussed
very shortly in Sec. 5.3.

Another test is offered by the computation of the Ward identities relating ⟨𝑆⟩ and ⟨𝑉̂𝜇⟩.
Once we have extracted the matrix elements, the last step is to solve for the physical form factor

given by Lorentz symmetry:

⟨𝑆⟩ =
𝑀2
𝐷
− 𝑀2

𝜋

𝜇𝑐 − 𝜇𝑙
𝑓0(𝑞2)

⟨𝑉̂𝜇⟩ =

[
𝑃𝜇 − 𝑞𝜇

𝑀2
𝐷
− 𝑀2

𝜋

𝑞2

]
𝑓+(𝑞2) + 𝑞𝜇

𝑀2
𝐷
− 𝑀2

𝜋

𝑞2 𝑓0(𝑞2)

Additionally, one can perform a 𝑧-expansion of those form factors, which is a conformal
mapping of the cut of Fig. 2 into a circle centered around some 𝑡0:

𝑧(𝑞2, 𝑡0) =
√︁
𝑡+ − 𝑞2 − √

𝑡+ − 𝑡0√︁
𝑡+ − 𝑞2 + √

𝑡+ − 𝑡0

While we only need very tiny interpolations between the many kinematics for which we have data,
performing them in the 𝑧 space is cleaner and makes any model-dependent assumption completely
negligible.
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ℜ𝑞2

ℑ𝑞2

physical 𝑞2

𝑡− 𝑡+

𝑀𝐷∗

Figure 2: Sketch of the analytical structure on which the 𝑧-expansion is based.

5. Preliminary results

5.1 Results on a coarse ensemble

The coarsest ensembles are not only the cheapest but also a great benchmark for the discreti-
sation effects of our mixed action: if either 𝑂 ((𝑎𝑚𝑐)𝑛) or 𝑂 ((𝑎𝑝)𝑛) terms get out of control, this
would first be visible on our coarsest ensembles, where this effect is the largest while the noise is
the smallest. The form factors are shown in Fig. 3 using the double ratio and the largest Δ𝑡 .
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Figure 3: We represent all the points for which we have a direct computation of form factors for H101, which
are a product of the choices of momenta on 𝐷 and 𝜋. The large number of kinematics make it obvious that
our curves are very smooth and any Lorentz-breaking term (which could arise at 𝑂 (𝑎2) or higher) is absent.
The value 𝑧 = 𝑧0 where the curves cross correspond to 𝑞2 = 0. Despite injecting large momenta to reach this
kinematics, the signal did not degrade much.
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5.2 On momentum dependence

Our use of many momenta was driven by a few considerations: First we did not know whether
reaching directly 𝑞2 = 0 would be possible, with good statistics and a good control of discretisation,
nor if hypercubic effects [6] would need to be dealt with, and we were optimistic about how much
can be gained by our contraction strategy which gets 𝑂 (𝑁2) correlators for the cost of 𝑂 (𝑁)
inversions. Describing the curve directly on the such a dense set also means we are sure we are not
introducing any model-dependent error, and allows to exploit all of the available experimental data.
It eventually turned out that those points are strongly correlated, as shown in Fig. 4.
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Figure 4: Correlation of the form factor 𝑓+ (available experimentally) between two values of 𝑧 called 𝑧1 and
𝑧2. This is obtained after some smoothing and re-sampling of the interpolated form factor, at a scale much
smaller than the correlation length.

5.3 The choice of time separation

An inconvenient of our contraction strategy is that the time separation between the two mesons
needs to be chosen in advance and cannot be varied without extra inversions. While distance
preconditioning and working in a pseudoscalar meson channel reduce the impact of having to
choose a large Δ𝑡 to eliminate excited states, it still has some impact on the precision we can reach.
Based first on 2-point runs and then on our first 3-point runs, we discovered that choosing this
separation around 2 fm seems to give some reasonable compromise and fit on all lattices. While it
is not yet fully clear whether a single-state analysis has a negligible bias with such a Δ𝑡 or whether
a multi-exponential analysis will be needed, this bias is for sure not much greater than our target
precision. However, if we reduce Δ𝑡 below this value, at 1.5 or even 1.3 fm, we get a clear signal of
something going wrong: the curves of the form factors are not smooth anymore, the time-dependent
contamination of excited states breaks Lorentz symmetry. This is particularly visible on ⟨𝑉𝑖⟩ and
𝑓+ at largish 𝑞2, and shows striking tensions even when the double ratio still appears to produce
plateaus with a good 𝜒2.

We therefore added a new set of runs dedicated to this question, with a minimal set of kinematics
but a few Δ𝑡 and several 𝑍2 noises. We can determine the value of 𝑓 (0) computed with a single of
those runs, and view it as a function of Δ𝑡 in Fig. 5, or we can also compare with a combined fit
of all 2-point and 3-point functions. This Bayes averaged combined fit is still a work in progress
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which suffers from some instabilities and poor 𝜒2 values, but its preliminary results give interesting
indications: it is compatible with most of the large-Δ𝑡 points and prefers single-exponential models,
except if including the leftmost red points of Fig. 5 which do pick some two-exponential models. It
also appears to have the potential to reduce the error bars.

15 20 25
∆t/a

0,66

0,67

0,68

0,69

0,7

0,71

0,72

0,73

0,74

0,75

f(
0
)

Limited kinematics, 4 noises

Full kinematics, 1 noise

Combined fit on black points

Form factors on H101

Figure 5: Points show the form factor computed from the double ratio. A small interpolation in 𝑞2 is
performed in each case. Those points are correlated since they share the same configurations and have
sources and sinks relatively close. Apart from the tension with the last two Δ𝑡, a clear tendency is visible
which corresponds to the residual O(𝑒−Δ𝐸Δ𝑡/2) contamination one would expect. The rightmost red point
corresponds to Fig. 3, while points with smaller source-sink separations are only used in this dedicated study
and are cut from the rest of the analysis.

5.4 Taking the limits

Now that we have looked in details at what happens for a specific ensemble, we can turn to the
continuum limit. As shown in Fig. 6, our current preliminary results look very compatible with a
linear fit in O(𝑎2) at this level of precision, with a 2𝜎 signal on the slope. The value at the second
coarsest ensemble is already compatible with the continuum limit, and the extrapolation only leads
to a moderate increase of the error bars.

Similarly, one can look at the mass dependence in Fig. 7. This time we can compare with FLAG
results [5], keeping in mind however that the continuum limit has not been taken into account. For
𝐷 → 𝜋 we once again get a 2𝜎 signal on the slope so that all point are almost compatible within
error bars. We observe an increase of the error bars, and part of it could be due to the fact that
we need to inject larger momenta, but the main explanation is simply that this point has not yet
accumulated the same number of 𝑍2 noises. For 𝐷 → 𝐾 , the mass dependence unexpectedly turns
out to be more important: we obtain a 3𝜎 for the slope and a mediocre 𝜒2/𝑑𝑜 𝑓 = 2.1. While this
might only be a statistical fluctuation, this calls for a comparison with other fitting models such
as HMChPT, as well as some extra care with finite volume effects (which we can not distentangle
given the precision we currently reach).
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Figure 6: Subset of results for the particular case on 𝑚𝑢𝑑 = 𝑚𝑠 and 𝑞2 = 0. In red the points are corrected
for a slight mismatch of the charm mass, to keep 𝑀𝐷/𝑀𝜋 constant. Continuum values are given from a
correlated linear fit in 𝑎2 (and 𝑀𝐷/𝑀𝜋) with 𝜒2/𝑑𝑜 𝑓 = 0.37(mass correction) or 1.14 (correction ignored).

6. Conclusion and perspectives

We have presented preliminary results for charm semileptonic decays which turn out to give
very sensible values, comparable in central value and error bar to what has already been published
in the litterature.

The excited states appear to be fully under control once a conservative 2 fm cut is applied
to the source-sink separation, but the cost to pay is a decrease in statistical precision. A more
elaborate combined fitting method is being developped to improve on that. While, without this
cut, excited state contaminations would break Lorentz symmetry, this can be disentangled from the
O(𝑎2) effects observed by ETMc, which are insignificant with our action.

The discretisation effects are small even at zero squared momentum transfer, where large 3-
momenta are injected, and the continuum extrapolation seems to be under control. Nevertheless,
future plans include even finer ensembles with 𝑎 = 0.039 fm.

The mass dependence is relatively mild but might require additional work given the precision
we are now reaching. Extra noise hits on H105 are already being computed. We also have results
on finer low-𝑚𝑢𝑑 ensembles which we chose not to present here because of their currently large
error bars.
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