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The Schwinger model is often used as a testbed for conceptual and numerical approaches in lattice
field theory. Still, some of its rich physical properties in anisotropic volumes have not yet been
explored. For themulti-flavor finite temperature Schwinger model there is an approximate solution
by Hosotani et al. based on bosonization. We perform lattice simulations and check the validity
of this approximation in the case of two flavors. Next we exchange the rôle of the coordinates to
enter the δ-regime, and measure the dependence of the residual “pion” mass on the spatial size,
at zero temperature. Our results show that universal features, which were derived by Leutwyler,
Hasenfratz and Niedermayer referring to quasi-spontaneous symmetry breaking in d > 2, extend
even to d = 2. This enables the computation of the Schwinger model counterpart of the pion
decay constant Fπ . It is consistent with an earlier determination by Harada et al. who considered
the divergence of the axial current in a light-cone formulation, and with analytical results that we
conjecture from 2d versions of the Witten–Veneziano formula and the Gell-Mann–Oakes–Renner
relation, which suggest Fπ = 1/

√
2π.
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1. The multi-flavor Schwinger model

The Schwinger model represents Quantum Electrodynamics— fermions coupled to an Abelian
gauge field — in d = 2 space-time dimensions [1]. The original 1-flavor version was solved
analytically, which revealed in particular an axial anomaly, whereas for Nf > 1 flavors the chiral
condensate vanishes in the chiral limit. The multi-flavor version is still of interest, as we see from
a number of contributions to this conference.

The Schwinger model shares qualitative features with QCD, in particular confinement and
topology of the gauge field configurations. It does not capture, however, asymptotic freedom (the
gauge coupling constant g is indeed constant), nor spontaneous chiral symmetry breaking. Still, the
spectrum contains Nf − 1 light bosons; at finite fermion mass and/or in finite volume, their behavior
is similar to quasi-Nambu-Goldstone bosons. By analogy, and in agreement with the literature, we
denote them as “pions”.

In addition, the particle spectrum contains a heavier boson, which can be interpreted as the
“photon”, but — following another analogy — it is often denoted as the “η-meson”. Since it is a
flavor singlet, its 3-flavor QCD analogue is η1, which is close to η′, but in the Schwinger model we
also just call it η. In the chiral limit, its mass is given by [2]

m2
η =

Nfg
2

π
(1)

(the coupling g has mass dimension 1), while the pion is massless. At finite (degenerate) fermion
mass m, no exact solution is known, but an approximate solution predicts the pion mass in infinite
volume as [3]

mπ = 4e2γ
√

2
π
(m2g)1/3 = 2.1633 . . . (m2g)1/3 , (2)

where γ = 0.577 . . . is Euler’s constant.
We present simulation results on regular, Euclidean lattices, with Wilson fermions and the

plaquette gauge action, obtained with the Hybrid Monte Carlo algorithm. We are particularly
interested in anisotropic volumes: first, we study this model at finite temperature, and compare
the “meson” masses with theoretical predictions. A bosonization ansatz reduces the system to a
quantum mechanical problem [3, 4], which we solve numerically.

By inverting the rôle of the coordinates, we access the δ-regime, which is still unexplored in
d = 2. We conjecture, and confirm, a residual pion mass mR

π ∝ 1/L at m = 0. The proportionality
constant provides a value for a parameter, which we denote — by analogy — as the “pion decay
constant” Fπ . It is dimensionless in d = 2, and its value is consistent with the Witten-Veneziano
relation (if we identify Fπ = Fη), and with the Gell-Mann–Oakes–Renner relation. It further agrees
with a previous determination in the framework of a light-cone formulation, which refers to the
divergence of the axial current [5].

2. The masses mπ and mη at finite temperature

In the 1990s, Hetrick, Hosotani and Iso discussed the bosonization of themulti-flavor Schwinger
model [3, 4]. Here we particularly refer to a system of non-linear differential equations given in
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Refs. [7], which represent a quantum mechanical description of the model at finite temperature.
These are Schrödinger-type equations, which imply the values of mπ , mη and the chiral condensate
Σ, as functions of the degenerate fermion mass m. We solved them numerically, as an eigenvalue
problem, by three numerical methods. They lead to consistent results, which stabilize for increasing
matrix size. Figure 1 shows these results for mπ and mη , as functions of m, for Nf = 2 flavors.1
The pion mass is compared to the approximation of eq. (2), which predicts a larger (smaller) mπ at
small (moderate) m.

As a test, we measured mπ and mη by simulations on a Lt ×L = 10×64 lattice. In this case, the
(renormalized) fermion mass is measured by referring to the PCAC relation. Simulations at various
values of β ≡ 1/g2 show that the lattice artifacts are small at β = 4.2 The notorious problems
close to the chiral limit prevent reliable results at m . 0.02. In the range of 0.02 . m . 0.05 the
bosonization prediction is compatible with the simulation results. At larger fermion mass, however,
this approximation significantly overestimates both mπ and mη . On the other hand, around m ≈ 0.2
formula (2) for mπ is in agreement with the simulation results.
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Figure 1: The masses mπ and mη as functions of fermion mass m, at finite temperature, obtained from the
approximation (2) of Ref. [3], from a bosonization method [7], and from lattice simulations.

The formulae of Refs. [7] also include the case of an arbitrary vacuum angle θ, which could
be of interest to probe simulation methods which try to overcome the sign problem. However, here
we see that these formulae are only reliable at small m, where the simulations are confronted with
additional difficulties.

3. Residual pion mass in the δ-regime

Chiral perturbation theory, as a systematic effective low-energy theory for QCD, distinguishes
the regimes of large space-time volume (p-regime), small space-time volume (ε-regime) and small
spatial volume but a large extent in (Euclidean) time, L � Lt (δ-regime); the length scale is set by
the inverse pion mass.

Here we address the δ-regime, which is least explored, and where finite-size effects entail a
residual pionmassmR

π even in the chiral limit. It was introduced byLeutwyler [8], who approximated
the quasi-1d system by quantummechanics, such that mR

π corresponds to the mass gap of a quantum

1For the chiral condensate, obtained from bosonization, we refer to Ref. [6].
2We are using lattice units. For a general lattice spacing a, this relation takes the form β ≡ 1/(ag2).
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rotor,
mR

π =
Nπ

2Θ
, Θ ' F2

πL3 . (3)

Nπ is the number of pions, and Θ is the moment of inertia, which is given here to leading order, in
d = 4 [8].

In the framework of O(N) models, with Nπ = N − 1, Hasenfratz and Niedermayer generalized
this formula with respect to the space-time dimension d > 2, and computed Θ to next-to-leading
order [9],

Θ = F2
πLd−1

[
1 +

Nπ − 1
2πF2

πLd−2

(
d − 1
d − 2

+ . . .

)]
. (4)

We see that Fπ has themass dimension d/2−1. The restriction to d > 2 avoids a possible singularity
in the last term, in agreement with the concept of would-be Nambu-Goldstone bosons in infinite
volume.

There are only few lattice QCD studies in the δ-regime. In the next-to-next-to-leading order,
sub-leading low-energy constants appear [10], and the comparison with QCD simulation results led
in particular to a reasonable value of the controversial constant l3 [11]. The transition to the p− and
ε-regime is investigated in Ref. [12].

In our case, the next-to-leading order term has the prefactor Nπ − 1 = 0. We dismiss it, despite
the denominator d − 2, so we conjecture for the 2-flavor Schwinger model

mR
π '

1
2F2

πL
. (5)

In order to test this conjecture, we performed simulations on lattices with spatial size L � Lt = 64,
at β = 3, 4 and 5. The value of mR

π is obtained by a chirally extrapolated plateau; two examples are
illustrated in Figure 2.
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Figure 2: Illustration of the residual pion mass plateaux in spatial sizes L = 10 and L = 8, at β = 4.

The plots in Figure 3 show an example for the PCAC fermion mass depending on the hopping
parameter κ, and amultitude of results formR

π at fixed β, but different L. We observe good agreement
with the conjectured proportionality mR

π ∝ 1/L.
This property allows us to proceed and extract the “pion decay constant” according to eq. (5).

The fits at fixed β lead to the Fπ-values in Table 1. The results at β = 3, 4 and 5 agree to percent

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
7
9

Finite temperature and δ-regime in the 2-flavor Schwinger model Ivan Hip

0.21 0.22 0.23 0.24 0.25 0.26 0.27

0.0

0.1

0.2

0.3

0.4

m
PC

AC

Lt=64, L=10, =4
Linear fit

6 7 8 9 10 11 12
L

0.30

0.35

0.40

0.45

0.50

0.55

m
R

L vs. mR, =3

mR = 1/(2F2L), F =0.3925(11)

5 6 7 8 9 10 11 12
L

0.3

0.4

0.5

0.6

m
R

L vs. mR, =4

mR = 1/(2F2L), F =0.3930(14)

6 7 8 9 10 11 12
L

0.30

0.35

0.40

0.45

0.50

m
R

L vs. mR, =5

mR = 1/(2F2L), F =0.3962(13)

Figure 3: Top, left: Fermion mass mPCAC as a function of the hopping parameter κ, in one example.
Generally we observe an approximately linear behavior. Rest: Residual pion mass mR

π in the δ-regime, as a
function of the spatial size L, at fixed β ≡ 1/g2. The simulation results are consistent with the hypothesis
mR

π ∝ 1/L. In each case, a 1-parameter fit to relation (5) provides the value of Fπ in Table 1.

β ≡ 1/g2 3 4 5
Fπ 0.3925(11) 0.3930(14) 0.3962(13)

Table 1: Results for Fπ , obtained by fits to eq. (5), at three values of β.

level, but for increasing β (i.e. suppressed lattice artifacts) we observe a slight trend up — we will
come back to it.

4. The 2d Witten–Veneziano formula

In the large-Nc limit of QCD, at finite ’t Hooft coupling gs
√

Nc, the 3-flavor chiral symmetry
breaking has the structure U(3) ⊗ U(3) → U(3). This implies 9 Nambu-Goldstone bosons, which
include — in addition to the meson octet built of π, K and η — the η′-meson. If one considers
1/Nc-corrections, the latter picks up a mass, which (with massless quarks u, d, s) is given by
the Witten–Veneziano formula [13], m2

η′F
2
η′ = 2Nf χ

q
t , where χ

q
t is the quenched topological

susceptibility: to this order, quark loops do not contribute, and Fη′ = Fπ . According to lattice
simulation results for χq

t , the fact that the η′-meson is so heavy in Nature (heavier than a nucleon,

5
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Figure 4: The quenched topological susceptibility, for two different lattice formulations of the topological
charge, based on the numerical evaluation of implicit expressions, and on simulations.

and therefore not interpretable as a quasi-Nambu-Goldstone boson) can indeed be understood along
these lines, as a topological effect.

According to Ref. [14], the conceptual basis of the Witten–Veneziano relation is more solid in
the multi-flavor Schwinger model. In the chiral limit it reads

m2
η =

2Nf

F2
η

χ
q
t . (6)

In this case there is no need to speculate (in QCD one assumes Nc = 3 to behave similarly to large
Nc). On the other hand, we do not have any obvious justification for setting Fπ = Fη , but we are
going to consider this scenario nevertheless.

Ref. [15] computed the topological susceptibility in 2dU(1) pure gauge theory in the continuum,
and infinite volume,

βχ
q
t = β

lim
V→∞

〈Q2〉

V
=

1
4π2 (Q : topological charge) . (7)

This value is consistent with the continuum limit of lattice results for χq
t . In particular, Ref.

[16] considered the (non-integer) topological lattice charge QS =
1

2π
∑

P sin(θP), where θP is the
plaquette variable, and derived the exact expression βχq

t = I1(β)/[4π2I0(β)].
If we refer to the usual lattice definition QT =

1
2π

∑
P θP ∈ Z, there is no closed expression for

βχ
q
t , but it can be evaluated numerically to arbitrary precision [17]. Figure 4 shows both analytic

expressions as functions of 1/β. As a consistency check we compare them to simulation results,
which accurately agree, and we also see that the continuum limit coincides in both cases with eq.
(7).

Thus eq. (7) is confirmed, and along with eqs. (1) and (6) we obtain, in the chiral limit,

F2
η =

2Nf

m2
η

χ
q
t = 2Nf

πβ

Nf

1
4π2β

=
1

2π
, (8)

If we assume Fπ = Fη , as in large-Nc QCD, we obtain Fπ = 1/
√

2π = 0.3989 . . . , which is close
to the value of Fπ that we obtained in the δ-regime, given in Table 1 — in particular the continuum
limit seems perfectly compatible.

Finally we are now going to amplify our perspective and consider Fπ in the 2-flavor Schwinger
model obtained by various formulations.

6
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5. The “pion decay constant” in the Schwinger model: an overview

In QCD, the pion decay constant Fπ appears in a variety of relations, for instance

(a) 〈0|J5
µ(0)|π(p)〉 = ipµFπ

(b) 〈0|∂µJ5
µ(0)|π(p)〉 = m2

πFπ

(c) Coefficient to the leading term of mR
π (L) in the δ-regime

(d) Witten–Veneziano formula
(e) Gell-Mann–Oakes–Renner relation.

This list is incomplete, of course, one might add e.g. the rôle as a leading Low Energy Constant
in the pion effective Lagrangian, the Goldstone-Wilczek current in the effective low-energy theory
for the neutral pion decay, or the coefficient of the axial current correlation function in the ε-regime
(for lattice studies, see e.g.Refs. [18]), but in the following we are only going to refer to the relations
(a) to (e).

Here the meaning of Fπ is always the same, but this is not obvious anymore when we refer
to one of these relations to introduce — by analogy — a “pion decay constant” in the 2-flavor
Schwinger model (although that “pion” does not decay). To the best of our knowledge, the only
previous study of this kind was performed in Ref. [5], which referred to relation (b). Working with
a light-cone formulation (at m > 0), Harada, Sugihara and Taniguchi obtained

Fπ(m) = 0.394518(4) + 0.040(1)m/g . (9)

In Section 3 we referred to property (c), and from the fits to mR
π (L) we obtained the values in

Table 1, which agree to two digits. Section 4 refers to relation (d), and if we add the hypothesis
Fπ = Fη , we arrive at Fπ = 1/

√
2π.

Let us finally consider (e), the Gell-Mann–Oakes–Renner relation in the Schwinger model [19]

F2
π (m) =

2mΣ
m2

π

, (10)

where Σ = −〈ψ̄ψ〉 is the chiral condensate. Ref. [3] derives explicit small-m formulae for Σ and
mπ . In a large volume (and at vacuum angle θ = 0), the latter is consistent with eqs. (1) and (2).
Inserting both into the Gell-Mann–Oakes–Renner relation (10) exactly confirms the result that we
conjectured in Section 4,

Σ =
1
π

( e4γm m2
η

4

)1/3
, mπ =

(
4e2γm2mη

)1/3
⇒ Fπ =

1
√

2π
. (11)

In this form, Fπ does not depend on m, nor on mη , and therefore neither on the coupling g.
Actually Ref. [3] distinguishes (in its eqs. (36) and (38)) three different regimes, depend-

ing on mass and size. In eq. (11) we reproduced the formula for Σ and mπ which are valid if
m√mηL3/2 � 1, mπL � 1 and mη � mπ . Interestingly, when we insert in eq. (10) the formulae
in any of the two other regimes, the result for Fπ is exactly the same.

7
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We conclude that relations (b), (c), (d) and (e) all lead to values for the “pion decay constant”
which are consistent with Fπ = 1/

√
2π, which looks highly satisfactory.

We close with two open questions:

• The consideration in Section 4, which refers to property (d), suggests the relation Fπ = Fη in
the chiral limit. In fact, Ref. [14] also predicts Fη = 1/

√
2π in the chiral limit of the 2-flavor

Schwinger model, but its relation to Fπ remains to be understood.

• Relation (a) is often considered the standard way to define Fπ in QCD. If we try to employ its
analogue to define Fπ in the Schwinger model, it seems to imply Fπ(m = 0) = 0,3 since the
pions are sterile, i.e. free, if we are strictly in the chiral limit (this is how a contradiction with
the Mermin-Wagner-Hohenberg-Coleman theorem is evaded [20]). In light of the results
presented here, also that aspect remains to be understood.
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