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We report an implementation of a multigrid solver for the Clover fermion on supercomputer

Fugaku, which uses A64FX CPU with Arm architecture. On Fugaku, a highly optimized imple-

mentation of BiCGStab solver with domain decomposed preconditioner for the Clover fermion,

called QCD Wide SIMD library (QWS), is available. We use the preconditioner in QWS as a

smoother of the multigrid solver. Our implementation shows reasonably good scaling and perfor-

mance. The code is developed by using Bridge++ code framework and its extension.
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1. Introduction

The most time-consuming part of typical lattice QCD simulations is linear solvers to solve Dirac

equations by using iterative methods. As the quark mass becomes smaller, the number of iterations

needed to solve the system increases and thus we need efficient preconditioners. The multigrid

method is one of the most successful methods to accelerate the solvers for lattice QCD [1].

In this article, we focus on the implementation of a multigrid solver for supercomputer Fugaku.

Fugaku, the number 1 machine in the Top 500 list as of November 2021, adopts a new processor

named A64FX with Armv8.2-A architecture with Fujitsu extension [2]. We usually need a specific

tuning to each new architecture to achieve high performance. For lattice QCD application on

Fugaku, we have developed a solver library for the Clover fermion, called QCD Wide SIMD (QWS)

library [3, 4], as a part of the co-design activities for the development of Fugaku [5]. Not only

being a library with high performance, but QWS also provides us an example of an efficient data

layout for lattice QCD simulation on Fugaku. QWS is a nested BiCGStab solver with a domain

decomposed Schwartz Alternating Procedure (SAP) preconditioner. Its development has an aspect

of a testbed for frequent neighboring communications and global reductions, and it indeed achieved

an ideal weak scaling up to more than 140,000 nodes [3]. Although it also gives good performance

in realistic situations such as $ (100) nodes and almost physical light quark mass, adopting better

algorithms may further reduce the elapsed time. Multigrid solvers are good candidates. The purpose

of this work is to provide a tuned version of the multigrid solver for Fugaku making use of the QWS

as a part of implementation.

It is desirable, however, to minimize the machine-specific codes to reduce the cost of the

implementation as well as the maintenance. We successfully prepared a framework for multigrid

solver using Bridge++ code set [6], where only machine-specific fermion operators and some basic

linear algebra routines are needed. The multigrid solver contains several solvers: an outer solver,

a smoother, and a coarse grid solver. The outer solver and the smoother work on the original

fine grid lattice. We need to prepare fine and coarse operators tuned to Fugaku. Following the

strategy of DD-UAMG [7], we adopt multiplicative SAP for smoother, for which we make use of

the implementation in QWS. Although combining with QWS is mainly for a performance reason,

our second purpose is to provide an example of using QWS from an application code. The source

code of the multigrid solver will be publicly available as a part of Bridge++ 2.0 [8].

In the next section, we provide the specification of Fugaku and introduce QWS. We explain

the details of our implementation in Sec. 3. We then provide the benchmark result in Sec. 4 before

giving the summary and outlooks in Sec. 5.

2. Supercomputer Fugaku and QWS

The supercomputer Fugaku is installed at RIKEN Center for Computational Science in Kobe,

Japan and has started shared service in March 2021. Its theoretical peak performance is 488

PFlops in double precision and 977 PFlops in single precision. Each node consists of one A64FX

processor [2]. The processor has 48 cores that are grouped as 4 core memory groups (CMGs)

for computation, and also has 2 or 4 assistant cores. The SIMD, called scalable vector extension

(SVE), is 512-bit wide. The theoretical peak performance of one processor is 3,072 GFlops
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in double precision at 2.0GHz operation, which is roughly the same as Intel Xeon Phi Knights

Landing (KNL). Each processor has an on-chip 32 GiB HBM2 memory whose bandwidth is 1,024

GB/s, which roughly amounts twice the KNL case. The network is Tofu Interconnect D. Its injection

bandwidth is 40.2 GB/s per node.

The development of Fugaku adopted the co-design approach [5], where the hardware developer

and software developer works cooperatively. Lattice QCD is one of their 9 applications targeted

in the co-design. The QCD Wide SIMD (QWS) library (QWS) [3, 4] is one the outcomes. It

implements a nested BiCGstab solver with domain decomposed preconditioner for the Clover

fermion and the inner solver achieved 102 PFlops in single precision using 147,456 nodes, which

is 10.2% of the theoretical peak performance in the boost mode with 2.2GHz.

The inner solver in QWS is a single precision BiCGStab solver for the preconditioned operator

�"SAP. Here, � is the Clover Dirac operator �Clover with the Clover term preconditioned,

� = �−1�Clover = 1 + ^�−1�, � = 1 +
8

2
^2SWf`a�`a (1)

with hopping parameter ^, the Clover term coefficient 2SW, and the hopping term �. "SAP is

a domain decomposed multiplicative SAP preconditioner for �. It uses 2 domains in each MPI

process and a Jacobi iteration with a fixed number of iterations applied alternatively to each domain.

A single precision solution of �G = 1 is constructed as G = "SAPH with H obtained by solving

(�"SAP)H = 1. Combining with the Richardson-iteration, we obtain the solution of �G = 1 in

double precision. To obtain the solution to the full operator �Clover, the source vector 1 should

be preconditioned with the Clover term by multiplying �−1. In this way we can solve the full

system �CloverG = 1 by using QWS. We can also use QWS to solve the SAP preconditioned system

�"SAPG = 1. It also provides a routine for applying "SAP. It is the user’s responsibility to calculate

� and �−1 from the gauge field and to set the value of �−1.

To minimize the communication latency, QWS uses a low level API called uTofu for Remote

Direct Memory Access (RDMA) together with a double buffering algorithm. An important restric-

tion is that due to the SIMD vector usage, the local lattice in the G-direction must be a multiple of

32 to make fully use of QWS. We describe the details of the SIMD vector usage in the next section.

3. Implementation Details

We employ two-level multigrid process for simplicity. We use single precision for the multigrid

preconditioner. The general structure of our implementation which does not use QWS is found

in [6].

The multigrid process contains the following four ingredients besides the setup process:

• Restriction from the fine grid lattice to the coarse grid lattice

• Coarse grid solver

• Prolongation from the coarse grid to the fine grid lattice

• Smoother (fine grid solver)

3
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The restriction and prolongation are domain decomposed algebraic processes with null space

vectors. We denote the number of null space vectors as #vec. We adopt a BiCGStab solver for the

coarse grid solver. We use a post smoother after the prolongation and apply several (fixed numbers

of) steps of multiplicative SAP. For this, we call "SAP of QWS from Bridge++. Since the Dirac

operator in QWS is preconditioned with the Clover term, we need to apply �−1 before applying

"SAP, which is also available in QWS. The outer solver is Flexible BiCGStab. Before starting

solving, we need the setup process to generate #vec null space vectors. The very initial null space

vectors are generated by applying "SAP on #vec random vectors and the initial coarse grid operator

is generated by using them. We then adaptively apply the multigrid preconditioner to them 4 times.

The coarse grid operator is also adaptively updated accordingly. The combination of the domain

decomposed adaptive multigrid with SAP smoother is essentially the same as DD-UAMG [7],

except for they did not use (flexible) BiCGStab but used (flexible/even-odd preconditioned) GMRes

solvers.

Another difference from DD-UAMG is that we use different domain sizes for the coarse-

graining process and SAP smoother. The domain size for the restriction/prolongation is constrained

by the SIMD vector usage as described below and we adopt 8 × 4 × 4 × 4 lattice points, which

divides each local lattice on one MPI process into $ (10)–$ (100) domains. For SAP, as we use

"SAP in QWS, we have only 2 domains in each local lattice.

The architecture-specific implementation appears in the usage of SIMD vector most apparently.

During the development of QWS, it turned out that packing the real part and imaginary part of

complex numbers into different SIMD vectors is more efficient than packing them into the same

vector. As depicted in Fig. 1, we pack the site degrees of freedom with two-dimensional tiling in the

G-H plane, where the complex numbers on 4× 4 lattice sites are packed into two SIMD vectors. The

same layout is used both on the fine grid lattice and the coarse grid lattice. It is natural to constrain

the size of the domain for the coarse-graining process to multiples of 4 × 4 × 1 × 1 lattice and we

adopt a domain that consists of 8×4×4×4 lattice sites in the benchmark. Since each domain gives

one coarse lattice site, this makes a typical number of coarse lattice sites divided by SIMD vectors

the same order of the number of threads, and thus we can still use thread parallelizations for the site

degrees of freedom. A comment to higher-level of the multigrid extensions is in order. In the next

level, the number of lattice points divided by SIMD would be $ (1), which is significantly smaller

than the number of threads. We can no longer use a simple thread parallelization for the site degrees

of freedom and we would need a different strategy of thread parallelization, e.g., parallelization for

the null vectors.

QWS, from which we employ the SAP preconditioner "S�% as a smoother on the fine grid,

adopt a different packing scheme of the lattice sites. It uses one-dimensional tiling in the G-direction

which constrains the domain size for the SAP to be a multiple of 16 in the G-direction. Each local

lattice has two domains and they divide the local lattice in G-direction. Therefore the local extent in

G-direction must be a multiple of 32 for "SAP. While it is acceptable to impose such a constraint

on the fine grid lattice, it is too restrictive on the coarse grid lattice. One could use a different data

layout for the coarse grid lattice but we instead use the two-dimensional tiling in Fig. 1 for both

grids. With this choice, we have a more flexible local lattice size, although the local lattice size

4
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Figure 1: SIMD data layout. We use the same layout for both fine and coarse grid systems.

we can combine with QWS is still restricted1. To bridge the data layouts between, suitable layout

conversions are inserted before and after the smoother.

We use MPI persistent communication with Fujitsu extension for the neighboring communi-

cations, except for those in "SAP which directly calls uTofu API as stated in the previous section.

The Fujitsu extension internally utilizes the assistant cores to accelerate the communication and

helps to overlap between communication and computation. We do not have to call MPI_Test that

some systems may require to trigger the communication in the background nor devote one thread

for calling MPI_Wait during the overlapped computation. Therefore all the computational cores

fully work for the computation during the communication.

4. Performance

For benchmarking our implementation, we examine 3 configurations from the following sets

(1 configuration from each):

• A: 323 × 64 lattice with 156 MeV pion [9].

• B: 643 × 64 lattice with 512 MeV pion [10].

• C: 963 × 96 lattice with 145 MeV pion [11].

As a reference implementation, we use a solver in LDDHMC [9] tuned for Fugaku. The tuned

version is a reimplementation of QWS in domain decomposed HMC but employs different axis

ordering from QWS, the C-direction loop is innermost and SIMDzed. In measuring the performance,

we allocate 1 MPI process per CMG, i.e., 4 MPI processes per node. The compiler is the Fujitsu

compiler with version 4.5.0. We use the clang mode of the compiler for the multigrid solver and

the trad mode for LDDHMC.

Figure 2 shows the elapsed time to solve 1 equation (left panel) and 12 equations on the same

configuration (right panel). For the multigrid solvers, we examine two different numbers of null

space vectors, #vec = 16 and 32. In the figure, the setup time, which is necessary to prepare the

null space vectors and called only once for each configuration, is also piled as a light color box to

each elapsed time of the multigrid solver. LDDHMC is always the fastest to solve one equation

1Although the efficiency is lower, a SAP preconditioner without QWS is also available in Bridge++ and can be

combined with the multigrid solver [6].

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
7
8

Multigrid Solver on Fugaku Issaku Kanamori

 0

 50

 100

 150

 200

 250

 300

A [16 nodes] B [16 nodes] C [216 nodes]

setup

elasped time [sec.]

LDDHMC 1 solve
MG16 setup+1 solve
MG32 setup+1 solve

 0

 100

 200

 300

 400

 500

 600

 700

A [16 nodes] B [16 nodes] C [216 nodes]

elasped time [sec.]

LDDHMC 12 solve
MG16 setup+12 solve
MG32 setup+12 solve

Figure 2: Elapsed time to solve the linear equation for one source vector (left panel) and twelve source

vectors (right panel). MG16 and MG32 denote the multigrid solvers with #vec = 16 and 32, respectively.

MG32 for Set B on 16 nodes did not run because the memory size needed exceeds the available memory

size.

because of the large overhead of the multigrid solver due to the setup process to generate null space

vectors. On the other hand, if we need to solve more equations with the same configuration, which

often happens in the measurements, the overhead can be compensated by a shorter elapsed time in

solving with the multigrid solver. Especially for the set C whose quark mass is the lightest among

the three sets, the time to solve 12 equations with multigrid solver (#vec = 16) including the setup

overhead is less than half the timing of LDDHMC. On the other hand, for Set B, which corresponds

to a rather heavy quark mass, the “solve” of the multigrid solver is slower than LDDHMC so the

overhead cannot be compensated.

The fraction of each component of the solving is shown in the left panel of Fig. 3. It is natural

to observe that having a larger number of null space vectors results in spending more time in the

coarse grid solver. Within the test cases, there is a tendency that spending more time in the smoother

gives shorter elapsed time to solve the equation. This is because the smoother from QWS is very

efficient. The performance of individual ingredients per node for set C with #vec = 16 on 216 nodes

are the following: 790 GFlops for the smoother, 91 GFlops for the coarse grid solver, 82 GFlops for

the restriction, and 125 GFlops for the prolongation. Note that the theoretical peak performance is

6,144 GFlops/node in single precision.

The right panel in Fig. 3 is a strong scaling plot of the solving and each part, for set C with

the #vec = 16 case. It is not a perfect scaling but a reasonably good scaling: as the number of

nodes increases by 2.25 times, the elapsed time reduces from 39.20 seconds to 20.56 seconds. This

corresponds to 86% in the parallelization efficiency. The scaling of the prolongation and restriction

(P/R) is almost perfect. The breaking of scaling mainly comes from the coarse solver and the

smoother.

5. Summary and Outlooks

We implemented a multigrid solver for the Clover fermion on supercomputer Fugaku. The

code is implemented in the framework of Bridge++ incorporating a preconditioner from QWS,

which is an outcome of the co-design activity for Fugaku. Our implementation, therefore, provides

6
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Figure 3: Left panel: fraction of elapsed time for each component of the multigrid solver. For each

configuration, the elapsed time is normalized by the solving time without the setup with the #vec = 16 case

(MG16). The result of MG32 for set B is missing because the required memory size exceeds the available

system memory size. Right panel: strong scaling of the multigrid solver with #vec = 16 with set C. P/R

stands for the prolongation and restriction.

an example of making an efficient use of QWS. We adopted a data layout specific to the A64FX

processor. To use a SAP preconditioner from QWS, the domain size for the SPA preconditioner is

different from the domain size for the coarse-graining process to make a coarse grid lattice. For

light enough quarks, the multigrid solver showed a shorter elapsed time to solve one equation than a

solver from LDDHMC, a reimplementation of QWS. The overhead to prepare the null space vectors

is not negligible so that the current implementation is not suitable to solely solve a single equation.

If we need to solve several equations on the same gauge configuration, the multigrid solver becomes

more efficient in the total computational cost. The performance largely owes to the high efficiency

of the QWS. The strong scaling is reasonably good.

For further improvement, we are planning to update the coarse solver and the setup process.

Although the current two-level multigrid is practically enough, it would be interesting to investigate

possible implementations for higher-level multigrid preconditioners. The code will be available in

the forthcoming release of Bridge++.
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