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1. Introduction

It is common knowledge that the QED coupling has an energy dependence with some of its
contributions originating from hadrons. These contributions can be computed using lattice QCD.
This paper deals with a method calculating these contributions up to the energy scale of the Z boson
mass.

Here we propose a strategy to compute the hadronic vacuum polarization function (HVP) over
two orders of magnitude in the energy. Our procedure is very similar to the well known step scaling
technique, and is based on the discrete Adler function. We use the Schwinger model (QED2) to test
this strategy.

An important ingredient for this computation is the line of constant physics (LCP), which in
principle has to be determined first. Along the LCP we can then compute the HVP. Here we proceed
the other way around. In Section 2 we present the computation of the HVP using the analytic result
for the LCP, which is a well known function in QED2. In Section 3 we turn to the determination of
the LCP, where we can compare the result of our procedure to the analytic formula.

2. Hadronic vacuum polarization

The HVP can be obtained from the Fourier transform of the coordinate space current-current
correlator 2`a (C, G) as:

Π(&) = 1
2&2

!/2∑
C ,G=−!/2

48& (C+G) (2CC (C, G) − 2C G (C, G) − 2GC (C, G) + 2GG (C, G)) (1)

Computing the difference in the vacuum polarization between two largely separated momenta
&0 and &= poses a serious difficulty, since in practice a single lattice cannot accommodate both
scales. Instead we proceed in the following way: assuming that there is an = > 0 integer such that
&= = 2=&0 we can compute the difference as the following telescoping sum:

Π(&n) − Π(&0) = Δ(2=−1&0) + Δ(2=−2&0) + · · · + Δ(&0) , (2)

where we introduced the discrete Adler function

Δ(&) = Π(2&) − Π(&) . (3)

This is our primary observable. The central idea of our strategy is that we utilize different physical
volumes for the different terms in Equation (2). We expect on general grounds that larger energies
are less sensitive to the volume and can therefore be computed in smaller volumeswithout increasing
the finite volume effects. This makes the calculation feasible in terms of computer time. During
each step we perform simulations with several lattice spacings to be able to perform a continuum
extrapolation. For the analysis of finite size effects we compare the results of the different steps at
the same physical momentum.

We test the procedure in QED2, for which we make simulations with = = 6 steps, thus covering
factor 27 = 128 change in the energy scale. This range is about the same that one has between the
energy scales of typical lattice QCD computations and the mass of the Z boson. We use Symanzik
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Figure 1: The continuum extrapolation of the Adler function at the fourth lattice momentum in the zeroth
step. Different lines correspond to different continuum extrapolations: one quadratic in 02 (dotted), one
quadratic in 02 skipping the coarsest lattice (solid) and one linear in 0 skipping the coarsest lattice (dashed).

improved gauge action with a gauge coupling parameter 4 and we use the notation V = 1
42 later on.

We set the mass of the fermions as V<2 = 0.8, which is a dimensionless and scale independent
quantity in QED2. In the zeroth step we fix the volume by setting <!0 = 16 and in the further steps
we decrease the physical extension by a factor of two, i.e. <!= = 16/2=. The gauge configurations
are generated with a Metropolis algorithm with an additional update step to improve the tunneling
of the topology [1, 2] . We use two flavors of dynamical staggered fermions, whose effect on the
gauge configuration is included by reweighting with the fermion determinant.

In each step we perform continuum extrapolation using lattices with lattice extent !/0 ∈
{32, 48, 64, 96, 128}. We set the V-parameter proportional to 1

02 and the mass parameter propor-
tional to 0. We work with several different momentum values of the Adler function on each lattice.
The small momenta exhibit small lattice artifacts but large finite volume effects, while the larger
momenta behave the opposite way. We find a good compromise between these effects at the fourth
lattice momentum & = 4 · 2c

!
. The continuum extrapolation in the zeroth step can be seen on

Figure 1. We estimate systematic errors by making continuum extrapolations with functions with
different lattice spacing dependence. We include these different values into a histogram whose
width gives the systematic error [3].

Also finite volume effects have to be considered. The fourth lattice momentum in step = is the
same physical momentum as the second one in step = + 1 and the first one in step = + 2. Thus we
can perform a finite volume analysis using the finest lattice (!/0 = 128) from step =, the third finest
(!/0 = 64) from step = + 1 and the coarsest (!/0 = 32) from step = + 2. We assume finite volume
effects can be described by the function exp(−"c!), where "c is the mass of the pseudo-scalar
meson. The corresponding fits can be seen in Figure 2. The extrapolation shows that the relative
deviation of the fourth lattice momentum from the infinite volume limit is always smaller than
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Figure 2: The infinite volume extrapolation of the discrete Adler function in different steps of our procedure.
The curves are constant plus exp(−"c!) type fits. The errors are statistical.

0.05 %. Thus by using the fourth lattice momentum in each step we can assume finite volume
effects on the level of half a per-mill in the final results.

Our final results for the discrete Adler function can be seen in Figure 3. The black line in
Figure 3 is the one-loop perturbative result [4]:

Π(&)1−loop/42 =
1
c

1
&2

(
1 + 2<2

&2
1
'

log
1 + '
1 − '

)
(4)

with ' =
√

1 − 4<2

&2 . Note, that this expression has an analytical continuation to & ≤ 2<, that we
use here. For large energies it matches our simulations well, however for small energies it deviates
significantly, the reason of which are effects beyond one-loop perturbation theory. We checked
this by performing simulations with different <2/42 at the momentum & = 4 · 2c

!0
, and found that

in the limit 42/<2 → 0 the simulation result converges to the one-loop perturbative value. Our

&/4 Δ(&)/42 stat. disc. fin. vol. total
1.405 0.036013 0.06 % 0.04 % 0.05 % 0.09 %
2.810 0.019360 0.01 % 0.03 % 0.03 % 0.05 %
5.620 0.006515 0.01 % 0.03 % 0.02 % 0.04 %
11.240 0.001806 0.01 % 0.05 % 0.05 % 0.07 %
22.480 0.000467 0.02 % 0.03 % 0.02 % 0.04 %
44.960 0.000118 0.01 % 0.02 % 0.05 % 0.05 %
89.920 0.000029 0.01 % 0.02 % 0.05 % 0.05 %

Table 1: The continuum limit of the Adler function measured on the fourth momentum on each step.

continuum and infinite volume extrapolated results for the seven steps are given in Table 1. Adding

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
1
8

Hadronic vacuum polarization from step scaling in the Schwinger model Fabian Justus Frech

Figure 3: The seven points show the discrete Adler functionmeasured in seven different steps. The combined
statistical and systematic error is smaller than the symbol size. The black line is the one-loop perturbative
prediction [4].

up the values gives the final result:

Π(27&0) − Π(&0) = 0.064308(23)stat.(76)syst. , (5)

where the first error is statistical, the second is the quadratic sum of the systematic errors of our
extrapolations. We reach a total accuracy of 0.12%.

3. Line of constant physics

Here we develop a strategy to compute the LCP for the steps (i.e. the lattices of a fixed volume)
given in the previous chapter assuming that in the initial step the LCP is already known. For a
� dimensional parameter space one needs � different observables to define the LCP. It is useful
to choose them in such a way, that the observables are sufficiently sensitive to variation of the
parameters.

3.1 General strategy

The method which is used here to set the LCP is called step scaling [5] [6]. It is applied in
the following way: we consider # lattices of the same physical volume but with different lattice
spacings. The LCP is already known for the  coarsest lattices of this set. The observables, which
define the LCP, are computed on the  coarsest lattices, so one can extrapolate their expectation
values to finer lattice spacings. At the same time we perform simulations on the # − finer lattices,
at each of which we choose at least � + 1 different parameters. From the observables measured at
these different parameters we construct interpolating functions. The point in the parameter space,
where the interpolations match the extrapolations from the coarser lattices gives the LCP. We apply
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this procedure for all the # −  lattice spacings. An example with # = 5,  = 4 and � = 1 can be
seen in Figure 4.

Figure 4: Illustration of the step scaling procedure. The inverse coupling parameter V is set using an
observable 〈$〉. The solid line shows the extrapolation of 〈$〉 to finer lattices. The dashed line shows the
interpolation of 〈$〉 at the finer lattice. The point, in which the solid line hits the dashed one gives our
estimation for V.

The increasing computational costs prevent us from going to very fine lattices we would like
to simulate. Thus in each step we decrease the physical extent by a factor U < 1. At the same time
we switch to new observables, that are less sensitive to finite volume effects. We can then perform
the previously mentioned procedure again.

3.2 Estimation of uncertainties

Obviously we have to associate statistical and systematical uncertainties to the procedure
described in Section 3.1. Systematical uncertainties mainly originate from the extrapolations to
finer lattice spacings. To consider these uncertainties one uses (�8)8=1,...,� different extrapolating
functions. Thus there are

∏�
8=1 �8 proposals for the (# −  ) × � parameters estimated in this step.

Each of this proposals is weighted with the product of the Akaike Information Criterions (AIC) of
the fit used for the considered proposal. The AIC of one extrapolation is given by:

exp
(
−1

2
(j2 + 2= 5 − =?)

)
, (6)

where = 5 is the number of fit parameters of the extrapolation and =? is the number of points that
are used in the fit [3]. We now randomly choose � of those proposals and use them as parameters in
the next step. Since the parameters of different samples do not differ that much we can just perform
2� different simulations for each lattice spacing and perform linear interpolations to compute the
observables at each parameter set. In this step wemake �×∏�

8=1 �8 proposals. From these we choose

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
2
1
8

Hadronic vacuum polarization from step scaling in the Schwinger model Fabian Justus Frech

� representatives for the next step. For the different sets of parameters we use flat weighting instead
of the AIC. The computation of the statistical uncertainties is somewhat simpler: the observables
of each simulation are put in #� Jackknife samples. Then the whole step scaling procedure is
performed #� times, the AIC is always computed on the full sample.

3.3 Application and test of the strategy in QED2

We apply the strategy described in Section 3.1 in QED2. Since we have exact formulas for the
LCP, we can investigate the quality of our procedure. The line of constant physics is described by
two parameters: the inverse squared gauge coupling V and the fermion mass <, so we have � = 2.

The observable sensitive to V is chosen to be a certain time along theWilson flow [7]. The flow
is computed with a fourth order Runge-Kutta algorithm to solve the following partial differential
equation:

3

3g
*g (G, `) = −

[
mG,`

1
V
((*g)

]
*g (G, `) (7)

where ((*) is the gauge action. We define our observable to be the time g0 at which g((*g)/(!/0)2
takes the value 0.375 · 4−=. By introducing a factor 4−= in the =th step of our procedure, we make
sure that the finite size effects on g0 remain small as the physical volume is decreased.

It seems obvious to use the pseudo-scalar meson mass to set the fermion mass since it has a
strong fermion mass dependence. Unfortunately at higher steps the physical extension of the lattices
becomes small such that the meson does not fit into the box anymore. Thus we use a certain value of
the discrete Adler function instead. This observable has the advantage that the momentum increases
according to the decreasing of the volume. Thus it can be resolved in any step. The disadvantage
of this observable is, that it only has a strong mass dependence if the fermion mass and & are at the
same order of magnitude [4]. So we multiply the mass of the valence quarks in the =th step by 2=.
This multiplication is justified, because staggered fermions have no additive mass renormalization.

We set # = 6,  = 4 and U = 1
2 . We use #� = 48 Jackknife samples and set � to 30. For both

the extrapolation of the Adler function and the Wilson flow time we use 3 different interpolations
in 02 (quadratic and linear through all points and an additional linear leaving out the coarsest one.).
The Adler function in each step is evaluated at & = 4 · 2c

!=
, where != = 2−=!0 is again the physical

lattice extension in the =th step.
We start in the zeroth step with the same volume and the exact LCP as in Section 2. An

additional coarse lattice (!/0 = 24) is added to have four lattice spacings for the extrapolations.
In each step we use the LCP from the previous step on lattices !/0 ∈ {24, 32, 48, 64}, perform
continuum extrapolations, and determine the new LCP on lattices !/0 ∈ {96, 128}. The results
of five steps of this procedure can be seen in Figure 5. The LCP computed by the step-scaling
procedure agrees with the analytical solution within our combined statistical and systematic error.
The deviation of the parameters is of order of half a percent. The statistical error is dominant and
the relative uncertainty grows with increasing step number.

3.4 Impact on the precision of the Adler function

Here we investigate how uncertainties on the LCP propagate into the Adler function (Section 2).
Let us start with the one originating from the V-uncertainty. From the point at which the parameter

7
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Figure 5: The relative deviation of the lattice spacing (top panel) and the mass parameter (bottom panel)
compared to the exact value. The systematic errors include discretization effects as well as accumulated
uncertainties from the previous steps.

starts to deviate due to the step scaling, the discrete Adler function is proportional to 1
&2 ∝ 1

V

(Figure 3). So if the estimated value of V is given by (1± n)Vexact the relative deviation of the Adler
function is given by ∓n . The relative deviation of V increases from 0.1 % in the first step to 0.9 % in
the last step. So we estimate, using the fact that the contribution of the first steps is stronger, a total
deviation of 0.25 % of the HVP. In Figure 6 one can see the relative derivative of the discrete Adler
function with respect to the mass. It is estimated via the secant slope through < and 1.05<. For
small volumes resp. high energies this derivative is close to zero. In the region which dominates the
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Figure 6: The continuum extrapolated normalized mass derivative of the Adler function evaluated at the
fourth momentum on six different volumes.

value forΠ(2&=) −Π(&0) the relative derivative is between 10 and 100 percent of the relative mass
deviation, which is between 0.1 % and 0.5 % in this region. The total uncertainty originating from
the mass deviation is then given by 0.15 %. Thus assuming we had calculated the HVP with the
step scaling parameters we have additional uncertainties of 0.000155 (V deviation) and 0.000095
(mass parameter deviation). All in all the parameter uncertainties dominate the other error sources
from Section 2.

4. Conclusion and outlook

First we calculated the hadronic vacuum polarization function in QED2 including continuum
and finite volume extrapolations, and reached a precision of one per-mill. Secondly we constructed
a step scaling strategy to compute the line of constant physics. This method was also tested in
QED2 and it was shown that it gives reliable results. Finally we estimated the uncertainty of the
measurement of the HVP under the assumption that the LCPwas set with the step scaling procedure.
We found that the uncertainty was smaller than 0.3 % in this case.

Our method can also be applied to compute the hadronic vacuum polarization in QCD. Amajor
difference is, that whereas in QED2 the discrete Adler function decreases for large energies, in QCD
it approaches to a finite value. Thus the high energy range makes a larger contribution to the final
result.
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