
P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
9
6

HotQCD on Multi-GPU Systems

L. Altenkort,𝑎 D. Bollweg,𝑎,∗ D. A. Clarke,𝑎 O. Kaczmarek,𝑎 L. Mazur,𝑎,𝑏 C. Schmidt,𝑎

P. Scior𝑎,𝑐 and Hai-Tao Shu𝑎,𝑑

𝑎Fakultät für Physik, Universität Bielefeld,
Bielefeld, Germany

𝑏Paderborn Center for Parallel Computing, Paderborn University,
Paderborn, Germany

𝑐Physics Department, Brookhaven National Laboratory,
Upton, New York, United States

𝑑Institut für Theoretische Physik, Universität Regensburg,
Regensburg, Germany
E-mail: altenkort@physik.uni-bielefeld.de,
dennis.bollweg@uni-bielefeld.de, dclarke@physik.uni-bielefeld.de,

okacz@physik.uni-bielefeld.de, lukas.mazur@uni-paderborn.de,

schmidt@physik.uni-bielefeld.de, pscior@bnl.gov, hai-tao.shu@ur.de

We present SIMULATeQCD, HotQCD’s software for performing lattice QCD calculations on GPUs.
Started in late 2017 and intended as a full replacement of the previous single GPU lattice QCD code
used by the HotQCD collaboration, our software has been developed into an extensive framework
for lattice QCD calculations distributed on multiple GPUs over many compute nodes. The code is
built on C++, CUDA, and MPI and leverages modern C++ language features to provide high-level
data structures, objects, and algorithms that allow users to express lattice QCD calculations in an
intuitive way without sacrificing performance. Implemented algorithms range from gradient flow,
correlator measurements, and mixed precision conjugate gradient solvers all the way to full HISQ
gauge field configuration generation using RHMC. After successful deployment in large-scale
computing projects, we want to share the result of our efforts with the lattice QCD community by
making it publicly available. In these proceedings, we will present some of the key features of
our code, demonstrate its ease of use, and show benchmarks of performance critical kernels on
state-of-the-art supercomputers.

The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021
Zoom/Gather@Massachusetts Institute of Technology

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

ar
X

iv
:2

11
1.

10
35

4v
1 

 [
he

p-
la

t]
  1

9 
N

ov
 2

02
1

mailto:altenkort@physik.uni-bielefeld.de
mailto:dennis.bollweg@uni-bielefeld.de
mailto:dclarke@physik.uni-bielefeld.de
mailto:okacz@physik.uni-bielefeld.de
mailto:lukas.mazur@uni-paderborn.de
mailto:schmidt@physik.uni-bielefeld.de
mailto:pscior@bnl.gov
mailto:hai-tao.shu@ur.de
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
9
6

HotQCD on Multi-GPU Systems D. Bollweg

1. Introduction

Understanding the structure of the QCD phase diagram is a rich area of high energy physics
research with important phenomenological implications for heavy-ion collisions, early universe
physics, and compact stars. Lattice calculations allow us to access regions of the diagram at large
temperatures and zero-to-moderate chemical potential. Of special interest is research into the nature
of the QCD critical point, and there is much effort nowadays trying to tackle this problem from the
perspective of the chiral limit [1].

Such investigations demand high-performance, highly parallelized code, as increasing the lat-
tice size, computing higher-order cumulants, and decreasing the light quark mass, especially with
an eye toward continuum-limit extrapolations, progressively push the limits of available computa-
tional power. Current investigations toward the chiral limit aim at and below light quark masses
of 𝑚𝑙 = 𝑚𝑠/160 [2, 3], with computational cost increasing dramatically as 𝑚𝑙 is lowered. This
pushes us to develop high-performance GPU code that can efficiently generate configurations with
dynamical quarks using the HISQ action [4]. Studies of two-point functions defined in the Euclidean
time direction, such as hadron correlators or the gluonic color-electric correlator, demand lattices
with a large time extension and correspondingly even larger spatial extensions, with modern lattices
reaching sizes as large as 1443 × 36 [5]. These large gauge fields cannot always be accommodated
by a single GPU, and hence it is important to be able to split the lattice among multiple GPUs.

The HotQCD collaboration’s lattice studies take place within the context of large-scale com-
puting projects on several Top500 systems, including Summit (OLCF), Marconi100 (CINECA),
JUWELS (JSC), and Piz Daint (CSCS), in addition to running on Bielefeld’s local GPU cluster.
Hence it is also important that we have flexible code that can function on different architectures.
Looking ahead a bit, it is also important that this code works for different GPU manufacturers; for
example Frontier, the successor to Summit, will use AMD cards instead of NVIDIA. This need for
flexibility spurs us to write highly modular code so that one can easily expand, adapt, and maintain
parts of the code close to the hardware without needing to make any changes to higher-level classes
and structures. Along this vein, we would like to leverage features of modern C++ to allow physicists
with intermediate C++ knowledge to easily and intuitively carry out lattice calculations.

These are the goals we had in mind when developing our (Si)mple, (Mu)lti-GPU (Lat)ice
code for (QCD) calculations, which we stylize as SIMULATeQCD. SIMULATeQCD is the successor to
HotQCD’s previous single-GPU code, the BielefeldGPUCode.

The increasing availability of multi-GPU systems motivated the Bielefeld lattice group in 2017
to add multi-GPU functionality; this presented an opportunity to develop a modern, future-proof,
multi-GPU framework for lattice QCD calculations with completely revised implementations of the
basic routines. In these proceedings we wish to share our progress writing this code, discussing its
design and structure (Section 2), and showcasing its performance (Section 3).

2. Design strategy and available modules

SIMULATeQCD is a multi-GPU, multi-node lattice code written in C++ and utilizing the OOP
paradigm and modern C++ features. It was originally written to run on multiple NVIDIA GPUs
using CUDA, but it also supports AMD GPUs through HIP. It is also possible to run the code on

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
9
6

HotQCD on Multi-GPU Systems D. Bollweg

Figure 1: Left: Example halo exchange process. Each process holds a sublattice, indicated by the gray
square. Copies of sites located near the borders of the sublattices, set off here by lines, are stored in the halos,
shown in white. Right: Diagram summarizing different possible communication channels for hardware.
Images taken from Ref. [6].

multiple CPUs. In the following we discuss key ideas guiding the code’s design and mention some
of the tools already available for state-of-the-art lattice calculations. A more detailed discussion of
SIMULATeQCD1 can be found in Ref. [6].

The development of SIMULATeQCD targets calculations of QCD at high temperature and density,
particularly in the regimes and limits listed in Section 1. With these applications in mind, we
designed the code such that it

1. is high-performant;

2. works efficiently on multiple GPUs and nodes;

3. is flexible to changing architecture and hardware;

4. is easy to use for lattice practitioners with intermediate C++ knowledge; and

5. contains tools needed for calculating observables of interest to hot and dense QCD.

To work with multiple devices, SIMULATeQCD splits a lattice into multiple sublattices, with
partitioning possible along any of the four Euclidean space-time directions. Each sublattice is given
to a single GPU. In addition to holding a field restricted to that sublattice, which we call the bulk,
the GPU holds a copy of that field from the borders of the neighboring sublattices – we call these
copies the halo. A schematic drawing of the exchange of halos between different GPUs is shown in
Fig. 1 (left).

Communication between multiple CPUs and multiple nodes is handled with MPI, which also
allows for communication between multiple GPUs. For NVIDIA hardware, communication via
CUDA GPUDirect P2P for intra-node and CUDA-aware MPI for inter-node channels is supported.
We boost performance by allowing the code to carry out certain computations while communicating,
such as copying halo buffers into the bulk, whenever possible.

1In this reference the code is referred to as the ParallelGPUCode, which was its working title at that time.

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
9
6

HotQCD on Multi-GPU Systems D. Bollweg

template <class floatT , bool onDevice , size_t HaloDepth >
struct CalcPlaq {
gaugeAccessor <floatT > gaugeAccessor;

CalcPlaq(Gaugefield <floatT ,onDevice ,HaloDepth > &gauge) : gaugeAccessor(gauge.getAccessor ()){}

__device__ __host__ floatT operator ()( gSite site) {
floatT result = 0;

for (int nu = 1; nu < 4; nu++) {
for (int mu = 0; mu < nu; mu++) {
result += tr_d(gaugeAccessor.template getLinkPath <All , HaloDepth >(site , mu , nu , Back(mu), Back(nu)));

}

}

return result;
}

};

LatticeContainer <true , floatT > lattContainer (...);
Gaugefield <floatT , true , HaloDepth > gauge (...);
lattContainer.template iterateOverBulk <All , HaloDepth >(CalcPlaq <floatT , HaloDepth >(gauge ))

Listing 1: Example plaquette kernel implemented as a functor.

This entire process by which splitting the lattice and communicating the halos is carried out is
quite technical and would generally make programming operations running over all sites difficult
to read, prone to mistakes, and daunting to a newcomer. Therefore we have opted to abstract away
indexing and communication using functor syntax. Here, an operation that should be performed at,
for example, each lattice site is wrapped in the function call operator() of a struct or class. The
functor takes as argument a gSite object, which contains all relevant indexing information about a
site such as its coordinates. The functor is then passed to one of a few abstract launch functions that
control on which sites the functor should be evaluated. These then create the necessary indexing
objects and pass them, together with the functor, to the RunFunctors class, which finally performs
the kernel launch. An example functor usage is shown in Listing 1. We have tried to make all
code in SIMULATeQCD very general and therefore made heavy use of templating. For instance, in
Listing 1, floatT is the precision, onDevice=true means we use GPUs, HaloDepth determines
the size of the halo, and Layout=All means we do not split sites by even/odd parity. We have
suppressed the arguments of lattContainer and gauge for simplicity.

All of these lattice splitting, indexing, and communication procedures make up the foundation
of our code, together with classes that manage the allocation of dynamic memory, file input/output,
logging, and common math operations. Physics and mathematics objects inherit from this backend
and heavily utilize the functor syntax. At the highest organizational level are the modules, which
are constructed from these physics and mathematics objects. At this highest level, we strive to
write code that closely and obviously mimics mathematical formulas or short, descriptive English
sentences. An overview of our code’s organizational scheme is depicted in Fig. 2. Adopting
functor syntax and encapsulating our code according to this scheme has already paid dividends. For
example, while SIMULATeQCD was originally written for CUDA, porting our code to use HIP was
accomplished by changing only few lines in the backend code, and we find almost no performance
difference between the HIP and CUDA backends for NVIDIA GPUs.

Modules include, but are not limited to, Wilson and Zeuthen flows [7, 8]; heat bath [9, 10]
and over-relaxation [11, 12] updates for generating pure SU(3) configurations; an RHMC [13] for
𝑁 𝑓 = 2 + 1 HISQ fermions; gauge fixing via over-relaxation [14]; sublattice updates [15, 16]; and
3D and 4D all-to-all correlations for arbitrary functions of arbitrary operators. To carry out matrix
inversion we use the conjugate gradient (CG) methods, for which we have multiple right-hand side
(multi-RHS), multiple shift, and mixed precision implementations to improve performance.

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
9
6

HotQCD on Multi-GPU Systems D. Bollweg

Figure 2: Diagram illustrating the code’s organizational hierarchy.

3. Performance

When generating HISQ configurations for typical parameters, about 60% of our RHMC run
time is spent inverting the Dirac matrix via CG, and in it, applying the /𝐷 operator to a vector
is the most performance-critical kernel. Hence this and related kernels are good candidates for
benchmarking. The kernel’s performance is limited by the available memory bandwidth, but its
arithmetic intensity can be increased by applying the gauge field to multiple RHS simultaneously.
Furthermore, it benefits from gauge field compression. Only a subset of the link matrix entries
are stored in memory, and the missing entries are recomputed from the stored ones based on the
symmetries, either SU(3) or U(3), of the link matrix. Figure 3 (top) shows how the performance
of the multi-RHS /𝐷 computed in single precision on a single JUWELS Booster node scales with
number of RHS and GPUs. We achieve up to 1.36TB/s memory throughput and up to 19 TFLOP/s
on one node. We also examine the speedup of the full RHMC algorithm on a single Booster node
in Fig. 3 (left) and compare it to the scaling of /𝐷. The scaling across a small number of nodes is
also shown in Fig. 3 (right).

4. Conclusion and outlook

We have presented SIMULATeQCD, our multi-GPU, multi-node, high-performance lattice code
written in C++. Dynamical quarks are currently supported through the HISQ discretization,
although other fermion discretizations can be implemented. We have adopted functor syntax,
made heavy use of templating, and organized our classes so that the code is easily adaptable to new
APIs, and so that lattice practitioners can easily write physics code without needing a thorough

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
9
6

HotQCD on Multi-GPU Systems D. Bollweg

 0

 5

 10

 15

 20

 0  2  4  6  8  10

TF
LO

P/
s

#RHS

1xA100 2xA100 3xA100 4xA100

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

 1  2  3  4

sp
ee

du
p

#GPUs

RHMC - 643x16, FP32
Dslash

ideal scaling

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2  2.5  3  3.5  4

sp
ee

du
p

# nodes (4x A100)

RHMC - 963x36, FP64
ideal scaling

Figure 3: Top: Scaling of multi-RHS /𝐷 with number of RHS for various numbers of GPUs on a single
JUWELS Booster node. Left: Scaling of /𝐷, and RHMC with number of GPUS on a single JUWELS Booster
node. Right: Scaling of RHMC with multiple nodes with 4 A100 GPUs each.

understanding of GPU parallelization. On multiple modern clusters, we find that its performance
scales quite well with increasing number of GPUs on a single node. An open source release is
forthcoming; it will be available in the near future in the repository linked in Ref. [17].

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) Proj. No. 315477589-TRR 211. This work was partly performed in the framework of
the PUNCH4NFDI consortium supported by DFG fund "NFDI 39/1", Germany. The benchmarks
in this work were performed on JUWELS Booster and the GPU cluster at Bielefeld University. We
thank the Bielefeld HPC.NRW team for their support.

References

[1] F. Karsch, Critical behavior and net-charge fluctuations from lattice QCD,
PoS(CORFU2018) (2019) 163 [1905.03936].

[2] H.-T. Ding et al. [HotQCD collaboration], Chiral phase transition temperature in
(2+1)-flavor QCD, Phys. Rev. Lett. 123 (2019) 062002 [1903.04801].

6

https://doi.org/10.22323/1.347.0163
https://arxiv.org/abs/1905.03936
https://doi.org/10.1103/PhysRevLett.123.062002
https://arxiv.org/abs/1903.04801


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
9
6

HotQCD on Multi-GPU Systems D. Bollweg

[3] D. A. Clarke, O. Kaczmarek, F. Karsch, A. Lahiri and M. Sarkar, Sensitivity of the Polyakov
loop and related observables to chiral symmetry restoration, Phys. Rev. D 103 (2021)
L011501 [2008.11678].

[4] E. Follana et al. [HPQCD, UKQCD collaboration], Highly improved staggered quarks on the
lattice, with applications to charm physics, Phys. Rev. D 75 (2007) 054502
[hep-lat/0610092].

[5] L. Altenkort, A. M. Eller, O. Kaczmarek, L. Mazur, G. D. Moore and H.-T. Shu, Heavy
quark momentum diffusion from the lattice using gradient flow, Phys. Rev. D 103 (2021)
014511 [2009.13553].

[6] L. Mazur, Topological aspects in lattice QCD, Ph.D. thesis, Bielefeld University (2021) .

[7] M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071
[1006.4518].

[8] A. Ramos and S. Sint, Symanzik improvement of the gradient flow in lattice gauge theories,
Eur. Phys. J. C 76 (2016) 15 [1508.05552].

[9] N. Cabibbo and E. Marinari, A new method for updating SU(N) matrices in computer
simulations of gauge theories, Phys. Lett. B 119 (1982) 387.

[10] A. D. Kennedy and B. J. Pendleton, Improved heatbath method for Monte Carlo calculations
in lattice gauge theories, Phys. Lett. B 156 (1985) 393.

[11] S. L. Adler, Over-relaxation method for the Monte Carlo evaluation of the partition function
for multiquadratic actions, Phys. Rev. D 23 (1981) 2901.

[12] M. Creutz, Overrelaxation and Monte Carlo simulation, Phys. Rev. D 36 (1987) 515.

[13] M. A. Clark and A. D. Kennedy, The RHMC algorithm for two flavors of dynamical
staggered fermions, Nucl. Phys. B Proc. Suppl. 129 (2004) 850 [hep-lat/0309084].

[14] J. E. Mandula and M. Ogilvie, Efficient gauge fixing via overrelaxation, Phys. Lett. B 248
(1990) 156.

[15] M. Luscher and P. Weisz, Locality and exponential error reduction in numerical lattice
gauge theory, JHEP 09 (2001) 010 [hep-lat/0108014].

[16] H. B. Meyer, Locality and statistical error reduction on correlation functions, JHEP 01
(2003) 048 [hep-lat/0209145].

[17] “SIMULATeQCD public code repository.”
https://github.com/LatticeQCD/SIMULATeQCD.

7

https://doi.org/10.1103/PhysRevD.103.L011501
https://doi.org/10.1103/PhysRevD.103.L011501
https://arxiv.org/abs/2008.11678
https://doi.org/10.1103/PhysRevD.75.054502
https://arxiv.org/abs/hep-lat/0610092
https://doi.org/10.1103/PhysRevD.103.014511
https://doi.org/10.1103/PhysRevD.103.014511
https://arxiv.org/abs/2009.13553
https://doi.org/10.4119/unibi/2956493
https://doi.org/10.1007/JHEP08(2010)071
https://arxiv.org/abs/1006.4518
https://doi.org/10.1140/epjc/s10052-015-3831-9
https://arxiv.org/abs/1508.05552
https://doi.org/10.1016/0370-2693(82)90696-7
https://doi.org/https://doi.org/10.1016/0370-2693(85)91632-6
https://doi.org/10.1103/PhysRevD.23.2901
https://doi.org/10.1103/PhysRevD.36.515
https://doi.org/10.1016/S0920-5632(03)02732-4
https://arxiv.org/abs/hep-lat/0309084
https://doi.org/https://doi.org/10.1016/0370-2693(90)90031-Z
https://doi.org/https://doi.org/10.1016/0370-2693(90)90031-Z
https://doi.org/10.1088/1126-6708/2001/09/010
https://arxiv.org/abs/hep-lat/0108014
https://doi.org/10.1088/1126-6708/2003/01/048
https://doi.org/10.1088/1126-6708/2003/01/048
https://arxiv.org/abs/hep-lat/0209145
https://github.com/LatticeQCD/SIMULATeQCD

	1 Introduction
	2 Design strategy and available modules
	3 Performance
	4 Conclusion and outlook

