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1. Introduction

The concept of symmetry or equivariance under symmetry transformations is at the theoretical
foundation of modern physics, and it is hard to overstate its importance. Noether’s first theorem
establishes a clear relationship between invariance of Lagrangians under continuous global sym-
metries and the existence of conserved quantities and conserved currents [1]. Global symmetries,
as the name implies, are transformations that are applied the same way at every point in space time.
In mechanical systems and field theories, energy and momentum conservation laws follow from
invariance under space-time translations, whereas rotational invariance implies the conservation of
angular momentum. More generally, global symmetry under the Poincaré group, which includes
translations, rotations and boosts, is the foundation of special relativity. In addition, symmetries not
associated with isometries of space-time are of particular importance to quantum field theory. For
example, global U(1) invariance in field theories of fermions and complex scalars implies the exis-
tence of locally conserved particle currents and globally conserved particle numbers. On the other
hand, local symmetry, associated with continuous differentiable transformations that are functions
on space time, is the foundation of gauge theories. For example, quantum chromodynamics (QCD)
is a gauge theory with symmetry group SU(3). All known fundamental forces are formulated as
gauge theories and therefore associated with particular local symmetries or gauge groups.

Machine learning methods can make use of the concept of symmetry in a similar manner.
Exploiting the geometry and symmetries of a particular machine learning problem to develop
appropriate neural network architectures is the main idea behind geometric deep learning (see
recent reviews [2] and [3] for a mathematical introduction). Convolutional neural networks (CNNs)
can be understood as special cases of generic neural networks that respect translational symmetry.
In the past decades, these types of neural networks have proven to be exceptionally useful in
image recognition and computer vision in general. More specifically, CNNs are neural networks
consisting of convolutional layers acting on image data or feature maps 𝑓 : Z2 → R𝑛, where
Z2 is the base space on which the image is defined and 𝑛 ∈ N denotes the number of channels
(e.g. 𝑛 = 3 for an RGB image). Convolutional layers are equivariant in the sense that a spatial
translation of the input feature map induces an appropriate translation of the output feature map.
Equivariance of CNNs naturally lends itself to applications in lattice field theory, which typically
exhibit translational symmetry [4]. Going beyond translations, the framework of group equivariant
convolutional neural networks (G-CNNs) [5] generalizes the equivariance property to a general
group 𝐺 with the traditional CNN being a special case when 𝐺 is identified with the translation
group. Apart from their theoretical appeal, G-CNNs with rotational symmetry have shown to be
more robust on certain image recognition tasks, where traditional CNNs can fail to make correct
predictions when provided with previously unseen rotated images. In the parlance of physics,
G-CNNs are neural networks exhibiting global symmetry. A generalization of equivariant neural
networks to local symmetries has been proposed in Ref. [6] called gauge equivariant CNNs. In this
architecture, the base space on which the data is defined is generalized to a curved manifold, as
opposed to a flat base space. In order to retain equivariance in convolutional layers, feature maps
must be appropriately parallel transported in order to obtain the correct transformation behavior
under coordinate or frame changes. Although the term “gauge equivariant” would, to physicists,
imply gauge symmetry in the sense of gauge theories such as electrodynamics or QCD, parallel
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transport of feature maps in these types of networks is purely due to the curved geometry of the
base space and not due to the presence of a gauge field. Recently, several groups have tackled
the problem of using machine learning methods in the context of lattice QCD or pure lattice
gauge theory, while retaining gauge symmetry in the sense of gauge theories. For example, gauge
equivariant normalizing flows [7–9] have been successfully used to train generative models which
can produce statistically independent lattice configurations for Monte Carlo simulations. Gauge
covariant neural networks that can perform smearing and Wilson flow have also been studied [10].
However, a general framework akin to G-CNNs or gauge equivariant CNNs for lattice gauge theory
has been lacking so far.

Lattice gauge theory is an exactly gauge covariant formulation of non-Abelian Yang-Mills
theory discretized on a lattice originally proposed by Wilson [11]. The degrees of freedom are
gauge link variables 𝑈𝑥,𝜇 ∈ SU(𝑁𝑐) defined on the edges of a hypercubic lattice Λ with lattice
spacing 𝑎. A gauge link 𝑈𝑥,𝜇 is defined along the edge (𝑥, 𝑥 + 𝜇) starting at the lattice site 𝑥 ∈ Λ
and ending at 𝑥 + 𝜇, which is shorthand for 𝑥 + 𝑎𝑒𝜇, where 𝑒𝜇 is a Euclidean basis vector. From
a geometrical viewpoint, gauge links define parallel transport along the edges of the lattice. Under
general gauge transformations, gauge links transform according to

𝑈 ′𝑥,𝜇 = Ω𝑥𝑈𝑥,𝜇Ω
†
𝑥+𝜇 . (1)

Reversing the path yields the inverse link which we denote by 𝑈†𝑥,𝜇 = 𝑈𝑥+𝜇,−𝜇. Links can be
concatenated to form plaquettes (1 × 1 loops)

𝑈𝑥,𝜇𝜈 = 𝑈𝑥,𝜇𝑈𝑥+𝜇,𝜈𝑈𝑥+𝜇+𝜈,−𝜇𝑈𝑥+𝜇,−𝜇, 𝑈 ′𝑥,𝜇𝜈 = Ω𝑥𝑈𝑥,𝜇𝜈Ω
†
𝑥 , (2)

which transform locally under lattice gauge transformations. The Wilson action is given by

𝑆𝑊 [𝑈] =
2
𝑔2

∑︁
𝑥∈Λ

∑︁
𝜇<𝜈

Tr
[
1 −𝑈𝑥,𝜇𝜈

]
, (3)

where 𝑔 > 0 is the Yang-Mills coupling constant.
In these proceedings we review lattice gauge equivariant convolutional neural networks (L-

CNNs), which is an equivariant neural network architecture proposed by the authors [12] specifically
tailored to SU(𝑁𝑐) lattice gauge theory. This architecture allows for neural networks that use link
variables in the input layer and satisfy equivariance under general lattice gauge transformations.
We discuss some aspects of L-CNNs in detail and show the main results of our computational ex-
periments, where we compare traditional (non-equivariant) CNNs to L-CNNs in specific regression
tasks.

2. Lattice gauge equivariant convolutional neural networks

The idea behind L-CNNs is to formulate CNNs which can be used to process gauge link
configurations U = {𝑈𝑥,𝜇}, i.e. the set of all gauge links on the lattice, in a gauge equivariant
manner. In this section we review a few aspects of L-CNNs; a complete description can be found
in our original paper [12]. Adopting a similar notation as in [5], a gauge equivariant function 𝑔
satisfies the equivariance property

𝑇Ω𝑔(U) = 𝑔(𝑇ΩU), (4)
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where 𝑇Ω denotes the application of a general gauge transformation Ω𝑥 . In the case of gauge links
we have 𝑇Ω𝑈𝑥,𝜇 = Ω𝑥𝑈𝑥,𝜇Ω

†
𝑥+𝜇. The transformation properties of 𝑇Ω𝑔(U) generally do not need

to be the same as the one for links. For example, the function 𝑔(U)𝑥 = 𝑈𝑥,𝜇𝜈 , which maps links to
plaquettes, transforms locally

𝑇Ω𝑔(U)𝑥 = 𝑔(𝑇ΩU)𝑥 = Ω𝑥𝑈𝑥,𝜇𝜈Ω
†
𝑥 = Ω𝑥𝑔(U)𝑥Ω†𝑥 . (5)

In particular, a function is gauge invariant if 𝑇Ω𝑔 = 𝑔, i.e. if 𝑇Ω acts as the identity map.
More generally, we consider functions of the form 𝑔(U,W) acting on a tuple (U,W)

consisting of the set of links and locally transforming matricesW = {𝑊𝑥,𝑖} where𝑊𝑥,𝑖 ∈ C𝑁𝑐×𝑁𝑐

are general complex matrices and 𝑖 ∈ {1, 2, . . . , 𝑁ch} denotes different channels similar to traditional
CNNs. We require thatW variables transform locally: 𝑇Ω𝑊𝑥,𝑖 = Ω𝑥𝑊𝑥,𝑖Ω

†
𝑥 . For example, the set

W may consist of all possible plaquettes on the lattice formed by links, but generallyW variables
can be considered independent of the linksU. A gauge equivariant function then satisfies

𝑇Ω𝑔(U,W) = 𝑔(𝑇ΩU, 𝑇ΩW). (6)

We formulate L-CNNs as CNNs consisting of individual layers which satisfy gauge equivariance.
The idea behind the use of tuples (U,W) in L-CNNs is to explicitly split the input of the L-CNN
into a feature map (or data)W and link variablesU, which encode the geometrical information of
how data at different lattice sites can be compared using parallel transport in a manner consistent
with gauge equivariance. This approach is comparable to gauge equivariant CNNs [6] where the
base manifold is the “stage” on which feature maps (which can be scalar-, vector- or tensor-valued)
are defined, and the connection provides the necessary information to compare feature maps at
different points. Similarly, the gauge linksU provide the stage for our feature mapsW. Figure 1a
shows the data in L-CNNs schematically.

We exemplify the L-CNN using two particularly important layers: gauge equivariant convolu-
tions and bilinear layers.

Lattice gauge equivariant convolutions (L-Convs) Convolutional layers in CNNs combine data
at different points by computing a sum of data of a feature map, where each term is weighted by
a (trainable) kernel. Consider a two-dimensional, single-channel feature map 𝑓 : Z2 → R, then a
convolution can be defined as

𝑓 ′𝑥 =
∑︁
𝑦∈Z2

𝜔𝑥−𝑦 𝑓𝑦 , (7)

where 𝜔𝑥−𝑦 ∈ R are the kernel weights and 𝑓 ′ is the new feature map after the convolution. The
largest distance considered in a convolution defines the size 𝐾 ∈ N of the kernel, i.e. we assume
the kernel to be compact. Computing a standard convolution of W variables would violate the
requirement of gauge equivariance, unless one accounts for parallel transport:

𝑊 ′𝑥,𝑖 =
∑︁
𝑦

𝜔𝑥−𝑦𝑈𝑥←𝑦𝑊𝑦,𝑖𝑈
†
𝑥←𝑦 , (8)

where 𝑈𝑥←𝑦 is a Wilson line on the lattice tracing a path from 𝑥 to 𝑦. However, the choice of the
path on the lattice is not unique. Whereas in the continuum one may only consider straight-line
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(a) Lattice data (U,W) (b) L-Conv layer (c) L-Bilin layer

Figure 1: Schematic overview of different L-CNN layers. (a) The data (U,W) considered in L-CNNs is a
tuple consisting of linksU (gray edges) and locally transforming matricesW (red dots). (b) A lattice gauge
equivariant convolution computes a weighted sum of parallel transported data (cyan points) along straight
lines (black lines) up to a certain kernel size (here, 𝐾 = 2). (c) A lattice gauge equivariant bilinear layer
multiplies data at a common lattice site (red dot), combining different channels in the process (blue and red
planes).

paths (or more generally geodesics), there are multiple shortest paths connecting 𝑥 and 𝑦 on the
lattice. A possible solution is to only take straight paths along the lattice axes into account. Thus,
we define the lattice gauge equivariant convolution (L-Conv) as

𝑊 ′𝑥,𝑖 =
∑︁
𝑗 ,𝜇,𝑘

𝜔𝑖, 𝑗 ,𝜇,𝑘𝑈𝑥,𝑘 ·𝜇𝑊𝑥+𝑘 ·𝜇, 𝑗𝑈
†
𝑥,𝑘 ·𝜇, (9)

where 𝜔𝑖, 𝑗 ,𝜇,𝑘 ∈ C is a trainable kernel with 1 ≤ 𝑖 ≤ 𝑁ch,out, 1 ≤ 𝑗 ≤ 𝑁ch,in, 0 ≤ 𝜇 ≤ 𝐷 and
−𝐾≤ 𝑘 ≤ 𝐾 , where 𝐾 is the kernel size. The parallel transport from 𝑥 to 𝑥 + 𝑘 · 𝜇 is given by

𝑈𝑥,𝑘 ·𝜇 =

𝑘−1∏
𝑖=0

𝑈𝑥+𝑖 ·𝜇,𝜇 = 𝑈𝑥,𝜇𝑈𝑥+𝜇,𝜇𝑈𝑥+2·𝜇,𝜇 . . . 𝑈𝑥+(𝑘−1) ·𝜇,𝜇 . (10)

We allow for possible mixing of channels, and the number of channels can change from 𝑁ch,in to
𝑁ch,out. Additionally, one may enlarge the channels ofW by unit matrices prior to computing the
convolution via

(𝑊𝑥,1,𝑊𝑥,2, . . . ,𝑊𝑥,𝑁ch,in) → (1,𝑊𝑥,1,𝑊𝑥,2, . . . ,𝑊𝑥,𝑁ch,in), (11)

to allow for a bias term. Even more expressivity is gained by also including hermitian conjugates

(𝑊𝑥,1,𝑊𝑥,2, . . . ,𝑊𝑥,𝑁ch,in) → (1,𝑊𝑥,1,𝑊𝑥,2, . . . ,𝑊𝑥,𝑁ch,in ,𝑊
†
𝑥,1,𝑊

†
𝑥,2, . . . ,𝑊

†
𝑥,𝑁ch,in

). (12)

We note that L-Convs, similar to any convolutional layer, are equivariant under translations of the
lattice. Figure 1b visualizes the L-Conv layer.

Lattice gauge equivariant bilinear layers (L-Bilin) Parallel transport is required when compar-
ing data at different lattice sites, but one can easily define operations acting only on single points
without violating gauge equivariance. An example for such a layer in the L-CNN is the lattice gauge
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gauge links

(input)

(U ,W)

L-Conv

L-Bilin

L-Act, L-Exp

Trace

gauge inv. output

CNN

predictions
(output)

Figure 2: Schematic of a feed-forward L-CNN consisting of multiple layers. Links are first pre-processed
to generate plaquettes (and/or Polyakov loops) before being fed to L-Conv and L-Bilin layers. Activation
functions and exponentiation layers may also be used. For gauge invariant predictions, a Trace layer is
required. Figure adapted from [12].

equivariant bilinear layer (L-Bilin) which combines two tuples (U,W) and (U,W ′) into a single
tuple (U,W ′′) in a bilinear manner. We define L-Bilin operations via

𝑊 ′′𝑥,𝑖 =
∑︁
𝑗 ,𝑘

𝛼𝑖, 𝑗 ,𝑘𝑊𝑥, 𝑗𝑊
′
𝑥,𝑘 , (13)

where 𝛼𝑖, 𝑗 ,𝑘 ∈ C are trainable weights with 1 ≤ 𝑖 ≤ 𝑁out, 1 ≤ 𝑗 ≤ 𝑁in,1 and 1 ≤ 𝑘 ≤ 𝑁in,2. The
product of the two matrices 𝑊𝑥, 𝑗 and 𝑊 ′

𝑥,𝑘
yields a matrix that transforms locally at 𝑥 and is thus

compatible with gauge equivariance. L-Bilin is linear in each of the two argumentsW andW ′,
however one may also chooseW ′ =W yielding a quadratic operation. Similar to L-Convs, the
channels ofW can be extended by unit matrices and hermitian conjugates. This way the bilinear
layer contains a bias term and linear terms as well (through multiplication with unit elements of the
other argument).

Other layers and the expressivity of L-CNNs Our paper [12] proposes more types of layers,
which we only briefly summarize here. For example, one may combine an L-Conv and an L-Bilin
layer into a single operation, which we found to be easier to train than separate convolutions and
bilinear layers. Other types are lattice gauge equivariant activation functions (L-Act), which locally
multiply W variables with gauge invariant scalars, and lattice gauge equivariant exponentiation
layers (L-Exp), which can modify the set of gauge links U. Another important layer is the Trace
layer, which maps (U,W) to gauge invariant variables T𝑥,𝑖 via

T𝑥,𝑖 = Tr
[
𝑊𝑥,𝑖

]
. (14)

This layer is used when the output of the L-CNN is required to be invariant, e.g. if the L-CNN is
used to fit invariant observables. To keep the discussion as general as possible, we have not yet
specified what information the W variables should contain, except requiring them to transform
locally. As a pre-processing step to any L-CNN, one may generateW from the set of gauge links
U by computing all plaquettes (which we refer to as a Plaq layer) and Polyakov loops (Poly layer).

Generic L-CNNs are comprised of multiple layers, as shown in Fig. 2, similar to standard CNNs.
It is well known that deep CNNs can describe arbitrary continuous functions (see e.g. universality
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Figure 3: Scatter plot of our best L-CNNs (green circles) vs. our best CNNs (black crosses) on 8 × 8 test
data for various sizes of the Wilson loop. The dashed line indicates perfect agreement between prediction
and true value. MSEs are stated in the top left corner of each panel. Figure from [12].

theorems in [13]). The question then arises as to what class of functions can be represented using
L-CNNs. In [12] we show that by stacking multiple L-Conv and L-Bilin layers and using plaquettes
as inputW variables, L-CNNs can generate contractible Wilson loops of arbitrary shape and size.
Non-contractible Wilson loops can also be generated by including Polyakov loops in the input layer.
Similar to universality theorems for deep CNNs, the use of L-Act layers allows arbitrary non-linear
gauge equivariant functions to be expressed as L-CNNs.

3. Computational experiments

In order to test the L-CNN framework in practice, we study a series of seemingly simple
regression problems. Restricting the base space to a quadratic two dimensional lattice (8 × 8 up
to 64 × 64) and focusing on SU(2), we generate gauge field configurations from a Markov Chain
Monte Carlo simulation at various values of the coupling constant. These configurations are split
into separate training, validation and test datasets. For each individual configuration, we compute
the real value of traced Wilson loops of various sizes:

𝑊
(𝑚×𝑛)
𝑥,𝜇𝜈 =

1
𝑁𝑐

Re Tr
[
𝑈
(𝑚×𝑛)
𝑥,𝜇𝜈

]
, (15)

where 𝑛, 𝑚 ≥ 1 define the width and height of the loop. We generate loops of size 1×1 (plaquettes),
1 × 2, 2 × 2 and 4 × 4. We then formulate a regression problem where the lattice configurations
should be mapped to the value of a particular traced loop using different L-CNN and non-equivariant
CNN architectures, i.e. the input is given by the linksU and the desired output (labels) are𝑊 (𝑚×𝑛)𝑥,𝜇𝜈 .
L-CNN architectures consist of multiple L-Conv+L-Bilin layers and a Trace layer at the end, similar
to Fig. 2. For comparison, we study a wide range of different non-equivariant CNN architectures
of various widths, depths and employing different activation functions. The CNNs are provided
with the same input as the L-CNN after pre-processing, namely links and plaquettes. Both types of
architectures are implemented and trained using the PyTorch framework. Networks are optimized
by minimizing the mean squared error (MSE) with respect to trainable weight parameters. Training
and validation are performed on the smallest lattice size (8× 8), but models are tested also on larger
lattice sizes.

Figure 3 shows one of the main results of this study, where the predictions of an L-CNN and
a CNN are plotted against the true values (labels) of the test dataset. As we have trained multiple
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networks of both types (100 L-CNNs, 2680 CNNs), we only show the best models encountered
in our study, which are selected using MSE on the validation dataset. We observe that L-CNN
architectures are able to make sensible predictions in all cases. On the other hand, the performance
of non-equivariant CNNs starts to deteriorate with larger loop size. In the case of the largest
loops, CNNs seem to find no correlation between input and output at all, which is indicated by an
almost constant prediction in the scatter plot (rightmost panel in Fig. 3). Furthermore, even our
best CNNs are sensitive to gauge transformations, i.e. the output of a non-equivariant CNN can
change drastically when processing a gauge equivalent lattice configuration, whereas L-CNNs are
gauge invariant by construction. We have also demonstrated that L-CNNs are able to solve similar
regression problems on four-dimensional lattices (up to 4 × 4 Wilson loops on 8 · 163 lattices).
We refer the reader to the original paper [12] for more details. Our code and datasets for these
computational experiments can be found in our GitLab repository1.

4. Summary and outlook

In these proceedings we have highlighted some aspects of the L-CNN architecture with a
particular focus on the concept of gauge equivariance and motivating the formulation of L-Conv
and L-Bilin layers. The L-CNN is a general, genuinely gauge equivariant neural network that can
be used for generic machine learning tasks in SU(𝑁𝑐) lattice gauge theory. In our computational
experiments we have demonstrated that L-CNNs are able to solve non-linear regression problems,
where non-equivariant CNNs fail to make sensible predictions.

Up until now we have not made use of (or implemented) L-Act and L-Exp layers, as our main
goal was to establish that L-CNNs can be used to generate arbitrary loops, which requires only
L-Conv and L-Bilin layers. Although we have only tested SU(2), our implementation works for
any SU(𝑁𝑐) gauge group. Using slight modifications, the code could also be adapted for U(1).
However, the L-CNN code requires large computational resources during training, in particular
with regards to memory consumption, and a more efficient implementation would be desirable.
This is of particular importance when using larger lattice sizes in four dimensions or studying more
complicated problems.

L-CNNs have been explicitly formulated for SU(𝑁𝑐) lattice gauge theory, which is a discretiza-
tion of (continuum) non-Abelian gauge theory. Although such a lattice formulation is required to
perform practical computations, a more general mathematical formulation in terms of principal
bundles (similar to gauge equivariant CNNs [6]) would be desirable from a theoretical viewpoint.
Putting the L-CNN on better theoretical foundations could help us generalize L-CNNs to other
types of data such as fermionic fields and develop new equivariant layers.

Our computational experiments focused on toy model regression problems, which we conducted
to compare the performance of L-CNNs and CNNs in a transparent way. It would be interesting to see
how L-CNNs (in particular L-Convs) could be applied to more practical problems in e.g. normalizing
flow models [7–9] or models that modify gauge links [10]. Another exciting direction would be
to use L-CNNs to formulate gauge equivariant continuous flows [14] to potentially speed up the
generation of lattice configurations for independent Monte Carlo sampling, while retaining a large

1See https://gitlab.com/openpixi/lge-cnn/.
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degree of symmetry. A related problem would be to use L-CNNs to upscale real-time simulations
of classical lattice gauge fields used in the early stages of relativistic heavy-ion collisions [15].
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