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We study the thermodynamic properties of QCD at nonzero isospin chemical potential using
improved staggered quarks at physical quark masses. In particular, we discuss the determination
of the equation of state at zero and nonzero temperatures and show results. Using the results for
the isospin density =� , we also determine the phase diagram in the (=� , ))-plane.
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1. Introduction

The QCD phase diagram and the equation of state (EoS) at non-zero quark densities have
been the subject of intense experimental and theoretical research in the past two decades. Physical
systems typically feature a non-zero charge and strangeness chemical potential on top of the baryon
chemical potential. The effect of the latter is usually dominant, but the other chemical potentials
can potentially also contribute a sizeable and important contribution to the dynamics of the system.
Furthermore, in some cases the charge chemical potential can play themajor role. This is the case for
an early Universe starting with large lepton flavour asymmetries [1–3]. Non-zero charge chemical
potential directly translates into a non-zero isospin chemical potential `� . While lattice simulations
with a generic combination of quark chemical potentials suffer from the infamous complex action
(or sign) problem, QCD at pure isospin chemical potential, i.e. at vanishing other chemical potential
components, has a real action and is amenable to direct Monte-Carlo simulations.
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Figure 1: Continuum phase diagram of QCD at
pure isospin chemical potential [4, 5] (taken from
Ref. [6]).

In the past few years we have performed ex-
tensive studies of QCD at non-zero isospin asym-
metry. In particular, we have computed the con-
tinuumphase diagram at physical pionmass [4, 5],
first discussed in chiral perturbation theory in
Ref. [7] 1, featuring the standard hadronic and
quark-gluon plasma (QGP) phases and a phase
with a Bose-Einstein condensate of charged pi-
ons (BEC phase). The phase diagram is shown in
Fig. 1. Furthermore, perturbation theory predicts
the existence of a superconducting BCS phase at
asymptotically large `� [7] and we are currently
investigating whether this phase could already be
present for the intermediate chemical potentials at
our disposal, see Ref. [14] and the contribution to
these proceedings Ref. [15].

In this proceedings article we discuss the extraction of the EoS at non-zero `� and present
results for different temperatures and #C = 8, 10 and 12 lattices. First accounts on our study of
the EoS have been given in Refs. [3, 6, 16]. Furthermore, we present the phase diagram in the
plane of isospin density and temperature, (=� , ))-plane, for which we perform a tentative continuum
extrapolation.

2. The equation of state at non-zero isospin asymmetry

The extraction of the EoS at ) = 0 has so far been done on a single lattice spacing only. The
details have already been published in Ref. [17]. To extract the EoS at `� ≠ 0 and ) ≠ 0, we
use the ensembles of Ref. [4], which have already been used to map out the phase diagram up
to `� /<c . 0.9. We refer the interested reader to this reference for the simulation details. The
ensembles we use entail three different temporal extents, #C = 8, 10 and 12, with an aspect ratio

1First pioneering studies on the phase structure have been reported in Refs. [8–13].

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
3
2

QCD thermodynamics at non-zero isospin asymmetry Bastian B. Brandt

#B/#C ≈ 3, and are set up with physical mass D, 3 and B quarks (D and 3 are mass-degenerate). To
simulate this setup, we use improved rooted staggered fermions with two levels of stout smearing.
Simulations are done at non-vanishing regulator _ (pionic source) and results are extrapolated to
_ = 0 using the improvement program described in Ref. [4]. The most important observable for
this proceedings article is the isospin density =� , for which the definition and extrapolation details
are discussed in Ref. [17]. From now on we will only use quantities which have already been
extrapolated to _ = 0.

2.1 Extracting the EoS from the isospin density

To compute the EoS from the lattice, the main task is the computation of the isospin density,
pressure ? and the interaction measure �, which determine the other related quantities. For energy
and entropy density, n and B, for instance, we have

n = � + 3? and B =
n + ? − `� =�

)
. (1)

The isospin density can be computed directly from the simulations, see Ref. [17]. What remains is
the computation of ? and �. It is convenient to rewrite these quantities as

?(), `� ) = ?(), 0) + Δ?(), `� ) and � (), `� ) = � (), 0) + Δ� (), `� ) . (2)

The `� = 0 contributions are already available in the literature, e.g. [18, 19]. For our action results
are also available in Ref. [20]. This leaves the computation of the modifications of the EoS due to
the isospin chemical potential, Δ? and Δ�. The computation of the modification of the pressure has
already been discussed in Refs. [3, 6, 16]. It can be computed using

Δ?(), `� ) =
∫ `�

0
3` =� (), `) . (3)

The computation of the interaction measure uses the relation

� (), `)
)4 = )

m

m)

(
?(), `� )
)4

)
+ `� =� (), `� )

)4 . (4)

There are two basic possibilities to compute �: (a) rewrite it as a derivative of the partition function
with respect to the lattice scale at non-zero chemical potentials (see, e.g., Ref. [21]) and evaluate
the relevant observables using `� = 0 subtraction; (b) use a two-dimensional interpolation of the
results for =� to obtain the function =� (), `� ) and use Eq. (4). Both have different systematics and
challenges and eventually one wants to compare the results from the two methods. Overall we found
a careful implementation of method (b) to lead to more accurate results, which we will present in
the following.

To be able to evaluate �, we can insert the pressure from Eq. (3), which results in (see also
Ref. [3])

Δ� (), `� ) = `� =� (), `� ) +
∫ `�

0
3`′�

[
)
m

m)
− 4

]
=� (), `′� ) . (5)

Thus, given a suitable differentiable and integrable interpolation for =� (), `� ), we can compute the
interaction measure using this expression.
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2.2 Interpolation of the isospin density

The remaining task is performing the interpolation, ideally in a way which is as model-
independent as possible. Note, that an interpolation of an unknown function based on a discrete
set of points with uncertainties is an ill-posed inverse problem and, as such, does not have a unique
solution. So one of the tasks is to find a solution which is close to the actual physical solution. This
is already true for the interpolations of the EoS at `� = 0 and will remain true through the necessary
interpolation for =� at `� ≠ 0. Here we will try to remain as model-independent as possible by
using all possible two-dimensional spline interpolations which provide a “good” description of the
data. These spline interpolations are generated by a spline Monte-Carlo discussed in Ref. [22].
The included weight function, as well as the imposed boundary conditions are chosen carefully to
reduce model dependence as much as possible. In addition, the spline boundary conditions can be
used to include additional physical information on the function at hand.

0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

µI/mπ

n
I
/m

3 π
T = 124 MeV

T = 136 MeV

T = 148 MeV

T = 162 MeV

Figure 2: Two-dimensional interpolation of the isospin
density on the #C = 8 ensembles as explained in the text.

For the interpolation of =� , we use two-
dimensional cubic splines for which we set
the outer spline grid point at small `� to
`� = 0 and impose the physical conditions
that =� and its second derivative are zero on
the `� = 0 axis (=� is an odd function of `� ).
The position of the other outer grid point in
`� -direction and the outer grid points in )-
direction is variable and we keep the second
derivatives at the outer points as free param-
eters (note, that all other boundary condi-
tions are determined by the interpolation).
In the weight for the Monte-Carlo average
we use the Akaike information criterion as
action (see Ref. [22] and references therein
for details) and include another term which
is designed to suppress oscillatory solutions (see section 4 in Ref. [23]).2 The associated free
parameter for a relative weighting of the two terms is kept as small as possible, while not leading to
solutions which oscillate strongly.

The resulting interpolation on a #C = 8 lattice is shown for a set of temperatures in Fig. 2.
The uncertainties include the uncertainty due to the individual data points (computed using the
bootstrap procedure with 1000 samples) and from the Monte-Carlo over spline interpolations.

2.3 Results for the EoS

Given the spline interpolation discussed in the previous section, we can now compute Δ? and
Δ� from Eqs. (3) and (4), evaluating the derivatives and integrals analytically. Using Eq. (1) we
further evaluate the energy and entropy densities. The results are shown for different temperatures

2In practice, we have used D as defined in eq. (15) in Ref. [23], replacing 5 in the denominators by its statistical
uncertainty and with n set according to a small fraction of the width between the datapoints closest to the varied grid
point.
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Figure 3: Results for the pressure (top-left), the interaction measure (top-right), the energy density (bottom-
left) and and the entropy density (bottom-right). The results have been obtained on our lattice with #C = 8
from the spline interpolation of the isospin density discussed in the main text. The dark gray curves are the
) = 0 results from Ref. [17].

and the #C = 8 ensemble in Fig. 3. We also show the ) = 0 results from Ref. [17] (dark gray
curves). Evidence for the presence of the pion condensate in the EoS is given by the characteristic
behavior of the interaction measure (top-right). At ) = 0 it initially increases starting at the BEC
phase boundary, `� /<c = 0.5, before reaching a maximum at around `� /<c ≈ 0.66 from where
it decreases and becomes negative at around `� /<c ≈ 0.84. Note, that for ) = 0 the interaction
measure and the other quantities vanish at `� = 0. These findings are in agreement with the results
from chiral perturbation at next-to-leading order [24]. The same behavior can still be seen for
) = 120 MeV and to some extent for ) = 145 MeV, where, however, the maximum (if it still exists)
is shifted towards larger values of `� . For ) = 165 MeV the system hardly enters the BEC phase
and no sign of pion condensation is present in Δ�. The BEC phase also leads to non-monotonous
behavior of the entropy density with `� at low temperatures.

Similar results are available for the #C = 10 and 12 lattices and we show a comparison between
the results for pressure and interaction measure in Fig. 4. While for the interaction measure the
bands overlap in most regions of parameter space, the pressure shows clear signs for sizeable lattice
artifacts at #C = 8. This is not unexpected given the large lattice artifacts for the leading order
Taylor coefficient at #C = 8 observed in Ref. [25] together with the fact that the Taylor expansion
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Figure 4: Comparison of the results for pressure (left) and interaction measure (right) for different values
of #C . The bands with the solid bounding lines are the ones for #C = 8 as shown already in Fig. 3, the ones
with the shaded bounding lines the ones for #C = 10 and the ones with dotted bounding lines the ones for
#C = 12.

provides a good description for the data at small `� [5] and the accumulation of differences in =�
in the integration to obtain Δ?, see Eq. (3). Consequently, #C = 8 is not yet within the scaling
region for a leading order continuum limit, for which #C = 16 lattices are needed for a reliable
extrapolation.

3. The phase diagram in the (nO, Z)-plane

With the interpolation for =� we can also determine the phase diagram in the (=� , ))-plane. A
tentative continuum extrapolation of the phase diagram using the #C = 10 and 12 results only (for
the same reasoning as above we do not expect #C = 8 to be in the scaling region) is shown in Fig. 5.
Note, that lattice results are not available below ) = 120 MeV, but we have matched the continuum
extrapolation to next-to-leading order chiral perturbation theory at a temperature of 30 MeV [26],
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Figure 5: Tentative continuum extrapolation for the phase diagram in the (=� , ))-plane, as explained in
the main text. The red line corresponds to the next-to-leading chiral perturbation theory prediction at small
temperatures [26].
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shown in Fig. 5 as the red line. We note, that the #C = 10 and 12 phase boundaries are fully included
in the uncertainties for the continuum phase boundaries. A final continuum extrapolation will be
obtained once the #C = 16 results become available.

4. Conclusions

We have shown first results for the full equation of state at non-zero isospin chemical potential
from #C = 8, 10 and 12 ensembles. The results have been obtained from a two-dimensional spline
interpolation of the isospin density with reduced model dependence due to a spline Monte-Carlo
analysis. The interaction measure shows a characteristic behavior with `� due to the presence
of pion condensation with an initial rise before reaching a miximum and decreasing. For small
temperatures it eventually becomes negative. This behavior is also seen in chiral perturbation at
next-to-leading order [24]. Using the interpolation for the isospin density, we have also determined
the phase diagram in the (=� , ))-plane and performed a tentative continuum extrapolation matching
to next-to-leading order chiral perturbation theory at small temperatures. For the isospin density,
the #C = 8 results seem to lie outside of the scaling region. Consequently results for #C = 16 are
required for reliable continuum extrapolations and we are currently extending our set of ensembles
accordingly.
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