
P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
1
2

3+1D 𝜽-Term on the Lattice from the Hamiltonian
Perspective

Angus Kan,𝑎,∗ Lena Funcke,𝑏,𝑐 Stefan Kühn,𝑑 Luca Dellantonio,𝑎 Jinglei Zhang,𝑎

Jan F. Haase,𝑎,𝑒 Christine A. Muschik𝑎,𝑐 and Karl Jansen 𝑓

𝑎Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo,
Waterloo, Ontario, N2L 3G1, Canada

𝑏Center for Theoretical Physics, Co-Design Center for Quantum Advantage, and NSF AI Institute for
Artificial Intelligence and Fundamental Interactions, Massachusetts Institute of Technology, 77
Massachusetts Avenue, Cambridge, MA 02139, USA

𝑐Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, N2L 2Y5,
Canada

𝑑Computation-Based Science and Technology Research Center, The Cyprus Institute, 20 Kavafi Street,
2121 Nicosia, Cyprus

𝑒Institute of Theoretical Physics and IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm,
Germany

𝑓Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
E-mail: angus.kan@uwaterloo.ca, lfuncke@mit.edu, s.kuehn@cyi.ac.cy,
luca.dellantonio@uwaterloo.ca, jinglei.zhang@uwaterloo.ca,

jfhaase@uwaterloo.ca, christine.muschik@uwaterloo.ca, karl.jansen@desy.de

Quantum and tensor network simulations have emerged as prominent sign-problem free
approaches to lattice gauge theories. Unlike conventional Markov chain Monte Carlo methods,
they are based on the Hamiltonian formulation. In this talk, we fill a gap in the literature and
present the first derivation of the Hamiltonian 3+1D 𝜃-term—which is an important sign-problem
afflicted term—for Abelian and non-Abelian lattice gauge theories. Furthermore, we perform
exact diagonalization for a 3+1D U(1) lattice gauge theory including the 𝜃-term on a unit
periodic cube. Our numerical results reveal a novel phase transition at fixed values of 𝜃 in
the strong-coupling regime. The transition is evidenced by an avoided level crossing in the
ground state energy, as well as sudden changes in the plaquette expectation value, the electric
energy density, and the topological charge density. Extensions of our work to larger lattices
can be readily performed using state-of-the-art tensor network simulations. Moreover, our work
provides a concrete starting point for an eventual quantum simulation of the 𝜃-dependent phase
structure and dynamics of lattice gauge theories in 3+1D. This talk is mainly based on [1]. We
expand beyond [1] by including a derivation of the (non-)Abelian fixed-length Higgs term in the
Hamiltonian formulation for future studies of (non-)Abelian-Higgs models with a 𝜃-term.

Preprint number: MIT-CTP/5350

The 38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021
Zoom/Gather@Massachusetts Institute of Technology

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:angus.kan@uwaterloo.ca
mailto:lfuncke@mit.edu
mailto:s.kuehn@cyi.ac.cy
mailto:luca.dellantonio@uwaterloo.ca
mailto:jinglei.zhang@uwaterloo.ca
mailto:jfhaase@uwaterloo.ca
mailto:christine.muschik@uwaterloo.ca
mailto:karl.jansen@desy.de
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
1
)
1
1
2

3+1D 𝜽-Term on the Lattice from the Hamiltonian Perspective Angus Kan

1. Introduction

Lattice gauge theories (LGTs) with topological 𝜃-terms are an important class of sign-problem
afflicted problems [2, 3] due to their relevance to the strong CP problem. They are largely inacces-
sible to Markov chain Monte Carlo (MCMC) simulations but can in principle be simulated using
tensor networks (TNs) and quantum simulations, performed on classical and quantum processors,
respectively. Indeed, 1+1D LGTs with topological 𝜃-terms have been simulated using TNs [4–9]
and a digital quantum computer [10]. Both approaches can in principle be extended to higher
dimensions. TNs have successfully simulated U(1) LGTs in 2+1D [11] and 3+1D [12]. There
have been a tremendous progress in quantum simulations of LGTs beyond 1+1D, resulting in a
wealth of literature. For a comprehensive overview of LGT quantum simulations, we recommend
Refs. [13, 14], wherein various approaches such as variational, analog, and digital simulations are
discussed. Very recently, efficient quantum algorithms for simulating Abelian and non-Abelian
LGTs in any dimensions on universal quantum computers have been developed [15, 16]. Given the
rapid developments of sign-problem free algorithms for LGTs in higher dimensions, it is therefore
of timely importance to explore lattice 𝜃-terms beyond 1+1D. Unlike conventional MCMC LGT
simulations, quantum simulations and many TN methods rely on the Hamiltonian formulation. This
is the motivation of our recent work [1], where we provided the first derivation of the 3+1D 𝜃-term
in the Hamiltonian formulation of LGTs.

In this contribution, we mainly summarize our findings in [1]. We also expand beyond [1]
by including a derivation of the (non-)Abelian fixed-length Higgs term [17] in the Hamiltonian
formulation in arbitrary dimensions, see App. A. The latter enables extensions of Refs. [8, 18],
where 1+1D Abelian-Higgs models with a 𝜃-term were simulated, to (non-)Abelian-Higgs models
in higher dimensions.

We begin by analytically deriving the 3+1D topological 𝜃-term in the Hamiltonian formulation
of LGTs using the transfer-matrix method [19]. The starting point of our derivation is the Lagrangian
definition in Refs. [20, 21]. We then numerically solve a 3+1D compact U(1) pure gauge theory with
our 𝜃-term on a single cube using exact diagonalization. We find evidences for a phase transition
at constant values of 𝜃, for inverse couplings of 𝛽 ≡ 1/𝑔2 ≲ 0.75. The evidences include an
avoided level-crossing in the ground state energy, and abrupt changes in the plaquette expectation
value, the electric energy density, and the topological charge density. Our results are in line with
previous analytical studies [22–24] of the 𝜃-dependent phase diagram of a 3+1D pure compact U(1)
LGT, where it was predicted that a phase transition appears at 𝜃 = 𝜋 and small 𝛽 in the confining
phase, which disappears at large 𝛽 in the Coulomb phase. Our results also qualitatively match
with prior numerical studies in 1+1D [6–8, 18]. In light of the recent algorithmic developments
of TNs [12] and quantum simulations [15, 16], our work provides a concrete starting point for a
detailed non-perturbative mapping of the 𝜃-dependent phase diagram in 3+1D.

2. Derivation of 3+1D 𝜽-Term in Hamiltonian Formulation

In this section, we briefly outline our derivation of a 3+1D topological 𝜃-term in the Hamiltonian
formulation of LGTs, using the transfer-matrix method [19]. We refer the reader to [1] for details.
For clarity, we hereafter disregard the Einstein notation and explicitly display all sums. Further, we
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distinguish the Lagrangian variables from operators in the Hamiltonian formulation by expressing
the latter with a hat (ˆ) symbol.

We begin with the Euclidean lattice action 𝑆 = 𝑆𝑊 + 𝑖𝜃
∑

®𝑛𝑄 ®𝑛, where 𝑆𝑊 is Wilson’s action,
𝑄 ®𝑛 is the topological charge, and 𝜃 is the vacuum angle [25]. We employ Peskin’s original lattice
definition of the topological charge in the Lagrangian formulation [20, 21],

𝑄 ®𝑛 = − 1
32𝜋2

∑︁
𝜇,𝜈,𝜌,𝜎

𝜀𝜇𝜈𝜌𝜎 Tr
[
𝑈®𝑛,𝜇𝜈𝑈®𝑛,𝜌𝜎

]
, (1)

where 𝜀𝜇𝜈𝜌𝜎 is the 4D Levi-Civita symbol and 𝑈®𝑛,𝜇𝜈 ≡ 𝑈®𝑛,𝜇𝑈®𝑛+𝜇̂,𝜈𝑈
†
®𝑛+𝜈̂,𝜇𝑈

†
®𝑛,𝜈 is the standard

plaquette variable formed by link variables [26].
To facilitate the use of the transfer-matrix method, we single out the temporal components of

𝑄 ®𝑛 and rewrite the Euclidean lattice action as

𝑆 = 𝑆𝑊 − 𝑖𝜃

16𝜋2

∑︁
®𝑛,𝑖, 𝑗 ,𝑘

𝜀𝑖 𝑗𝑘Tr
[(
𝑈®𝑛,0𝑖 −𝑈

†
®𝑛,0𝑖

)
𝑈®𝑛, 𝑗𝑘

]
, (2)

where 𝜀𝑖 𝑗𝑘 is the 3D Levi-Civita symbol.
In the temporal gauge with 𝑈®𝑛,0 = 1, the transfer matrix can then be written as [1]

𝑇 =
∏
®𝑛,𝑖

∫ (∏
𝑏

𝑑𝑥𝑏®𝑛,𝑖

)
𝑒
𝑖
∑

𝑏 𝑥𝑏®𝑛,𝑖 𝐸̂
𝑏
®𝑛,𝑖𝑒

𝑎

2𝑔2𝑎0
Tr

[
2 cos

(∑
𝑏 𝑥𝑏®𝑛,𝑖𝜆

𝑏
)]

× 𝑒
𝑖𝜃

16𝜋2
∑

𝑗,𝑘 𝜀𝑖 𝑗𝑘Tr
[
2𝑖 sin

(∑
𝑏 𝑥𝑏®𝑛,𝑖𝜆

𝑏
)
𝑈̂®𝑛, 𝑗𝑘

]
𝑒

𝑎0
2𝑔2𝑎

∑
®𝑛, 𝑗,𝑘 Tr

[
𝑈̂®𝑛, 𝑗𝑘+𝑈̂†

®𝑛, 𝑗𝑘

]
, (3)

where 𝑎 is the spatial lattice spacing, 𝑎0 is the temporal lattice spacing, 𝑥𝑏®𝑛,𝑖 ∈ R are the group
parameters, and 𝜆𝑏 are the normalized group generators for the fundamental representation that
satisfy Tr[𝜆𝑎𝜆𝑏] = 𝛿𝑎𝑏. Moreover, we have introduced the electric field operators 𝐸̂𝑏

®𝑛,𝑖 that are
conjugate to the link operators 𝑈̂®𝑛,𝑖 . They satisfy the commutation relations[

𝐸̂𝑎
®𝑛,𝑖 , 𝐸̂

𝑏
®𝑛,𝑖

]
= 𝑖

∑︁
𝑐

𝑓 𝑎𝑏𝑐 𝐸̂𝑐
®𝑛,𝑖 ,

[
𝐸̂𝑎
®𝑛,𝑖 , 𝑈̂®𝑛,𝑖

]
= −𝜆𝑎𝑈̂®𝑛,𝑖 , (4)

where 𝑓 𝑎𝑏𝑐 are the structure constants of the gauge group.
In the temporal continuum limit, as 𝑎0 → 0, the integral in Eq. (3) is dominated by the

maximum of the cosine term. Thus, we expand the cosine and sine terms in Eq. (3) around 𝑥𝑏®𝑛,𝑖 = 0,
and obtain a Gaussian integral that evaluates to

𝑇 ∝ 𝑒
−𝑎0

{
𝐻̂KS− 𝑖𝑔2 𝜃

8𝜋2𝑎
∑

®𝑛,𝑖, 𝑗,𝑘,𝑏 𝜀𝑖 𝑗𝑘Tr
[
𝐸̂𝑏

®𝑛,𝑖𝜆
𝑏𝑈̂®𝑛, 𝑗𝑘

]}
, (5)

where 𝐻̂KS is the Kogut-Susskind pure gauge Hamiltonian [27],

𝐻̂KS =
𝑔2

2𝑎

∑︁
®𝑛,𝑖,𝑏

𝐸̂𝑏
®𝑛,𝑖 𝐸̂

𝑏
®𝑛,𝑖 −

1
2𝑔2𝑎

∑︁
®𝑛, 𝑗,𝑘

Tr
[
𝑈̂®𝑛, 𝑗𝑘 + 𝑈̂

†
®𝑛, 𝑗𝑘

]
. (6)
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Since the transfer matrix is defined as 𝑇 ≡ 𝑒−𝑎0𝐻̂ , where 𝐻̂ is the Hamiltonian, we can directly read
off the topological 𝜃-term in the Hamiltonian formulation,

𝜃𝑄̂ = − 𝑖𝑔2𝜃

8𝜋2𝑎

∑︁
®𝑛,𝑖, 𝑗 ,𝑘,𝑏

𝜀𝑖 𝑗𝑘Tr
[
𝐸̂𝑏
®𝑛,𝑖𝜆

𝑏𝑈̂®𝑛, 𝑗𝑘

]
= − 𝑖𝑔2𝜃

4𝜋2𝑎

∑︁
®𝑛,𝑏

∑︁
(𝑖, 𝑗 ,𝑘) ∈even

Tr
[
𝐸̂𝑏
®𝑛,𝑖𝜆

𝑏
(
𝑈̂®𝑛, 𝑗𝑘 − 𝑈̂

†
®𝑛, 𝑗𝑘

)]
,

(7)

where 𝜀𝑖 𝑗𝑘 is the 3D Levi-Civita symbol, (𝑖, 𝑗 , 𝑘) is summed over the set of even permutations,
and we have used 𝑈̂®𝑛, 𝑗𝑘 = 𝑈̂

†
®𝑛,𝑘 𝑗 . In order to better approximate the electric field at each site, we

replace the outgoing electric field 𝐸̂𝑏
®𝑛,𝑖 with an average of the incoming and outgoing electric fields.

As such, we obtain the following improved definition of the topological 𝜃-term:

𝜃𝑄̂ = − 𝑖𝑔2𝜃

8𝜋2𝑎

∑︁
®𝑛,𝑏

∑︁
(𝑖, 𝑗 ,𝑘) ∈even

Tr
[(
𝐸̂𝑏

®𝑛−𝑖,𝑖 + 𝐸̂𝑏
®𝑛,𝑖

)
𝜆𝑏

(
𝑈̂®𝑛, 𝑗𝑘 − 𝑈̂

†
®𝑛, 𝑗𝑘

)]
. (8)

3. Model and Methods

In this section, we apply the expression in Eq. (8) to a 3+1D U(1) lattice gauge theory. Using
exact diagonalization, we numerically investigate the theory at non-vanishing values of 𝜃 on a single
cube with periodic boundary conditions. In our simulations, we consider the Hamiltonian

𝐻̂ = 𝐻̂𝐸 + 𝐻̂𝐵 + 𝜃𝑄̂, 𝐻̂𝐸 =
1

2𝛽

∑︁
®𝑛

3∑︁
𝑗=1

𝐸̂2
®𝑛, 𝑗 , 𝐻̂𝐵 = − 𝛽

2

∑︁
®𝑛

3∑︁
𝑗 ,𝑘=1;𝑘> 𝑗

(𝑈̂®𝑛, 𝑗𝑘 + 𝑈̂
†
®𝑛, 𝑗𝑘),

𝜃𝑄̂ = −𝑖 𝜃
𝛽

∑︁
®𝑛

∑︁
(𝑖, 𝑗 ,𝑘) ∈even

(𝐸̂ ®𝑛−𝑖,𝑖 + 𝐸̂ ®𝑛,𝑖) (𝑈̂®𝑛, 𝑗𝑘 − 𝑈̂
†
®𝑛, 𝑗𝑘), (9)

where we have set 𝑎 = 1, 𝛽 = 1/𝑔2, 𝜃 = 𝜃/8𝜋2, and (𝑖, 𝑗 , 𝑘) is summed over the set of even permu-
tations. Moreover, the link operators satisfy [𝐸̂ ®𝑛, 𝑗 , 𝑈̂®𝑛′, 𝑗′] = 𝛿®𝑛, ®𝑛′𝛿 𝑗 , 𝑗′𝑈̂®𝑛, 𝑗 . We use eigenstates of
the electric field operators 𝐸̂ ®𝑛, 𝑗

��𝐸 ®𝑛, 𝑗
〉
= 𝐸 ®𝑛, 𝑗

��𝐸 ®𝑛, 𝑗
〉
, 𝐸 ®𝑛, 𝑗 ∈ Z as a basis for the gauge fields. In

order to simulate the infinite-dimensional gauge-field operators on a computer with finite resources,
we truncate these operators at a cutoff 𝑠 such that they become

𝐸̂ ®𝑛, 𝑗 =
𝑠∑︁

𝐸®𝑛, 𝑗=−𝑠
𝐸 ®𝑛, 𝑗

��𝐸 ®𝑛, 𝑗
〉〈
𝐸 ®𝑛, 𝑗

�� , 𝑈̂®𝑛, 𝑗 =
𝑠∑︁

𝐸®𝑛, 𝑗=−𝑠+1

��𝐸 ®𝑛, 𝑗 − 1
〉〈
𝐸 ®𝑛, 𝑗

�� . (10)

Hereafter, we use the minimal symmetric truncation and set 𝑠 = 1.
The Hilbert space that is spanned by the electric eigenstates contains many unphysical states

that violate Gauss’ law, i.e.,

𝐺̂ ®𝑛 =

3∑︁
𝑖=1

(𝐸̂ ®𝑛,𝑖 − 𝐸̂ ®𝑛−𝑖,𝑖), 𝐺̂ ®𝑛 |𝛹 ⟩ = 0, ∀®𝑛. (11)

Thus, the spectrum of the Hamiltonian will be contaminated by these unphysical states. Follow-
ing [28, 29], we overcome this issue by deriving and simulating an effective Hamiltonian, where
Gauss’ law is incorporated as a set of constraints over the gauge-field operators. The resulting ef-
fective Hamiltonian not only is supported by a physical, gauge-invariant subspace, but also requires
less memory to simulate. For a 3D periodic cubic lattice with 𝑁 = 𝐿3 sites, the number of basis
states is reduced from (2𝑠 + 1)3𝐿3 to (2𝑠 + 1)2𝐿3−1.
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4. Numerical Results
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Figure 1: (a) Bare topological charge density, (b) bare electric energy density, and (c) plaquette expectation
value as a function of 𝜃 for 𝛽 ≤ 0.75. (d) The plaquette expectation values for 𝛽 = 0.01 (left 𝑦-axis) and 0.75
(right 𝑦-axis) are shown in greater detail to emphasize the change in the behavior as 𝛽 increases. In (a) and
(b), note that the lines for 𝛽 = 0.1, 0.05, 0.01 are covered by the red line. This figure is taken from [1].

In this section, we report our numerical findings in [1]. We use exact diagonalization to
compute the low-lying spectrum of the Hamiltonian in Eq. (9) on a single periodic cube. We focus
on the 𝜃-dependence of the energy spectrum and of the ground-state expectation value of various
observables. In particular, we study the plaquette expectation value

⟨P⟩ = − 1
𝑉𝛽

⟨𝛹0 |𝐻̂𝐵 |𝛹0⟩, (12)

where 𝑉 is the number of plaquettes in the lattice and |𝛹0⟩ is the ground state, the bare topological
charge density

⟨Q⟩ = − 𝛽

𝑉
⟨𝛹0 |𝑄̂ |𝛹0⟩, (13)
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and the bare electric energy density 〈
E2〉 = 𝛽

𝑉
⟨𝛹0 |𝐻̂𝐸 |𝛹0⟩. (14)

We summarize our results for the topological charge density, the electric energy density, and
the plaquette expectation value in Fig. 1. We simulated a wide range of couplings 𝛽 ∈ [0.005, 0.75],
and for each value of 𝛽, a range of values 𝜃 ∈ [−0.5, 0.5]. Both the topological charge density
and the electric energy density exhibit discontinuities at |𝜃 | ≈ 0.333 when 𝛽 ≤ 0.3, as shown in
Figs. 1(a) and 1(b). The plaquette expectation value displays spikes at these points, as depicted in
Figs. 1(c) and 1(d). These abrupt changes point towards a phase transition occurring at |𝜃 | ≈ 0.333.
Also shown in Fig. 1, these distinct features vanish as 𝛽 increases beyond 0.3, suggesting the
disappearance of the phase transition in this regime.

Our observed phase transition most likely corresponds to the theoretically predicted phase
transition at 𝜃 = 𝜋 [23, 24]. The main reason is that this transition, to our knowledge, is the
only analytically predicted constant-𝜃 transition in a compact U(1) gauge theory. Furthermore, in
agreement with our observed transition, the analytical studies [23, 24] predict the occurrence of this
transition for small 𝛽, which vanishes at large 𝛽 as one approaches the Coulomb phase. However,
since we only simulate a single cube, which is the minimal volume in 3+1D, harsh finite-volume
effects are expected. In particular, we attribute the shift in our observed transition point from 𝜃 = 𝜋

and the lack of the predicted 2𝜋-periodicity in 𝜃 [23, 24] to finite-volume effects. For evidences,
we turn to related numerical studies of 1+1D U(1) models with a 𝜃-term [6–8, 18], since, to our
knowledge, similar studies to ours in 3+1D do not exist. A lack of periodicity in 𝜃 and noticeable
shifts of the 𝜃 = 𝜋 transition point to larger 𝜃-values were reported for simulations of lattices
with only a few sites, i.e., ≲ 10 [8, 18]. In [7], a discontinuity in the topological charge density
emerged only when the lattice size reached 64 sites, and was not observed in lattices with ≤ 32
sites. Only in simulations of larger lattices with ≳ 100 sites, both the 2𝜋-periodicity and the 𝜃 = 𝜋

transition point are fully restored [6–8, 18]. As such, in 3+1D, we expect to recover both the
periodicity and the correct transition point in larger lattices as well. In the future, this could be
verified by including our 𝜃-term in the TN simulations for 3+1D U(1) LGTs [12], as well as eventual
quantum simulations of LGTs. We note in passing that the truncation of electric fields could have
plausibly played a role in the lack of periodicity and the shift in transition point. However, such
truncation effects were shown to be neglibigle in [1]. Additionally, we note that in our simulations,
the observables obey the following symmetries: ⟨P(𝜃)⟩ = ⟨P(−𝜃)⟩,

〈
E2(𝜃)

〉
=

〈
E2(−𝜃)

〉
, and

⟨Q(𝜃)⟩ = − ⟨Q(−𝜃)⟩. Similar symmetries were observed in Refs. [6, 7, 18]. We remark that these
symmetries can be directly inferred from the fact that the CP transformation 𝑈®𝑛,𝑖 → 𝑈

†
®𝑛,𝑖 flips the

sign of the topological charge but not that of the plaquette expectation and electric energy density.
Next, we investigate the order of the quantum phase transition, which is unknown from analytical

predictions [22, 23]. We focus on the low-lying energy spectrum of the Hamiltonian at 𝛽 = 0.3
and near the transition point 𝜃 ≈ 0.333. Our results for the first four energy levels, shown in Fig. 2,
reveal an avoided level-crossing between the ground state and the first excited state at the transition
point. These findings rule out a first-order transition, where one would expect a level crossing.
Instead, the spectrum suggests that a second or higher-order phase transition is causing the sudden
changes in the observables in Fig. 1.
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Figure 2: Low-lying spectrum as a function of 𝜃 for 𝛽 = 0.3. The ground state and the first excited state
exhibit an avoided level-crossing at 𝜃 ≈ 0.333. This figure is taken from [1].

5. Conclusion and Outlook

In this talk, we presented the transfer-matrix derivation of the Hamiltonian lattice 𝜃-term
for 3+1D Abelian and non-Abelian LGTs, based on our recent work [1]. We then discussed the
numerical results obtained in [1], where a 3+1D U(1) LGT with our 𝜃-term on a single periodic
cube was diagonalized. Our numerical results indicate a phase transition at constant values of 𝜃
and small values of 𝛽, which eventually vanishes as 𝛽 increases towards the Coulomb phase. These
findings are in accordance with the analytically predicted phase transition of Refs. [23, 24]. Finally,
our simulations reveal an avoided level-crossing, implying that this transition is not of first order,
which was previously unknown to Refs. [23, 24].

Using the TN methods developed for 3+1D LGTs in Ref. [12], our numerical results can be
readily cross-checked and extended to larger lattices. Moreover, the 1+1D Abelian-Higgs study
may be extended to 3+1D by including the 3+1D U(1) Higgs term in [30]. To further enable non-
Abelian-Higgs studies, we straightforwardly generalize the derivation in [30] to the non-Abelian
case in App. A, again using the transfer-matrix method [19].

In the light of the recently developed quantum algorithms for LGTs [15, 16], we envision future
fault-tolerant quantum simulations of 3+1D LGTs including our 𝜃-term. To build towards this
vision, one can create efficient quantum circuits to simulate our 𝜃-term following Ref. [15]. One
begins by expanding the electric field and link operators in the group representation basis [31, 32],
as we have done in this work for the U(1) case. The electric field operators in this basis for the
SU(2) and SU(3) cases were shown in Refs. [33] and [34], respectively. The SU(2) and SU(3) link
operators in the fundamental representation in this basis can be found in Ref. [31]. As such, the
circuit synthesis techniques in Ref. [15] can be applied to construct gate-by-gate quantum circuits
to simulate our 𝜃-term.
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A. Derivation of the fixed-length Higgs term

In this section, we derive the fixed-length Higgs term for (non-)Abelian LGTs in the Hamiltonian
formulation in arbitrary dimensions, using the transfer-matrix method [19]. We start with the action
for a fixed-length Higgs field in the fundamental representation [17],

𝑆 = − 𝜅𝑎𝑑−1

2

∑︁
®𝑛,𝜇

Tr
[
𝛷®𝑛𝑈®𝑛,𝜇𝛷

†
®𝑛+𝜇̂ + ℎ.𝑐.

]
, (15)

where 𝜅 is the coupling, 𝑑 is the spatial dimension, and the Higgs variable𝛷®𝑛, similar to 𝑈®𝑛,𝜇, is a
gauge group matrix in the fundamental representation. Note the action has the same structure, i.e.,
a sum of products of gauge group matrices, as the standard Wilson’s action [26]. Particularly in
the temporal gauge, where 𝑈®𝑛,0 = 1, the temporal parts of the two actions become mathematically
identical, up to differences in the prefactors, i.e.,

∑
®𝑛 Tr[𝛷′

®𝑛𝛷
†
®𝑛+ℎ.𝑐.] versus

∑
®𝑛,𝑖 Tr[𝑈 ′

®𝑛,𝑖𝑈
†
®𝑛,𝑖+ℎ.𝑐.],

where the variables with and without the prime (′) are from consecutive time slices. This motivates
us to directly follow the derivation of the Kogut-Susskind Hamiltonian from Wilson’s action in
Ref. [19]. We define a pair of conjugate site operators, 𝛱̂ 𝑎

®𝑛 and 𝛷̂®𝑛, which satisfy the relations[
𝛱̂ 𝑎

®𝑛 , 𝛱̂
𝑏
®𝑛
]
= 𝑖

∑︁
𝑐

𝑓 𝑎𝑏𝑐𝛱̂ 𝑐
®𝑛 , [𝛱̂ 𝑎

®𝑛 , 𝛷̂®𝑛] = −𝜆𝑎𝛷̂®𝑛. (16)

In terms of the site and link operators, we then obtain the transfer matrix

𝑇 =
∏
®𝑛

∫ (∏
𝑎

𝑑𝑥𝑎®𝑛

)
𝑒
𝑖
∑

𝑏 𝛱̂ 𝑏
®𝑛 𝑥𝑏®𝑛 𝑒

𝜅𝑎𝑑

2𝑎0
Tr

[
2 cos

(∑
𝑏 𝜆𝑏𝑥𝑏®𝑛

)]
𝑒

𝜅𝑎0𝑎
𝑑−2

2
∑

®𝑚, 𝑗 Tr
[
𝛷̂ ®𝑚𝑈̂ ®𝑚, 𝑗𝛷̂

†
®𝑚+ 𝑗+ℎ.𝑐.

]
. (17)
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Note that this expression has essentially the same form as the transfer matrix in Eq. (5.25) in
Ref. [19]. In both cases, the temporal part of each action gives rise to an exponentiated cosine term.
When 𝑎0 → 0, the integral is dominated by the region near the maximum of cosine function, where
𝑥 ®𝑛 ≈ 0. Expanding about 𝑥 ®𝑛 = 0 and keeping only the quadratic term, as in Ref. [19], the transfer
matrix becomes a Gaussian integral that evaluates to

𝑇 ∝ 𝑒
−𝑎0

{
1

2𝜅𝑎𝑑
∑

®𝑛 𝛱̂ 2
®𝑛−

𝜅𝑎𝑑−2
2

∑
®𝑚, 𝑗 Tr

[
𝛷̂ ®𝑚𝑈̂ ®𝑚, 𝑗𝛷̂

†
®𝑚+ 𝑗+ℎ.𝑐.

]}
. (18)

From this, we can directly read off the Higgs term

1
2𝜅𝑎𝑑

∑︁
®𝑛

𝛱̂ 2
®𝑛 − 𝜅𝑎𝑑−2

2

∑︁
®𝑛, 𝑗

Tr
[
𝛷̂®𝑛𝑈̂®𝑛, 𝑗𝛷̂

†
®𝑛+ 𝑗 + ℎ.𝑐.

]
. (19)

When applied to the U(1) gauge group, this reduces to the Abelian-Higgs term derived in [30].
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