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We apply the complex Langevin method (CLM) to overcome the sign problem in 4D SU(2) gauge
theory with a theta term extending our previous work on the 2D U(1) case. The topology freezing
problem can be solved by using open boundary conditions in all spatial directions, and the criterion
for justifying the CLM is satisfied even for large 𝜃 as far as the lattice spacing is sufficiently small.
However, we find that the CP symmetry at 𝜃 = 𝜋 remains to be broken explicitly even in the
continuum and infinite-volume limits due to the chosen boundary conditions. In particular, this
prevents us from investigating the interesting phase structures suggested by the ’t Hooft anomaly
matching condition. We also try the so-called subvolume method, which turns out to have a similar
problem. We therefore discuss a new technique within the CLM, which enables us to circumvent
the topology freezing problem without changing the boundary conditions.
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Complex Langevin simulation of 4D SU(2) gauge theory with a theta term Akira Matsumoto

1. Introduction

We can explore the topological nature of quantum field theories via topological terms. Recently,
gauge theories with a theta term have been studied by ’t Hooft anomaly matching. In particular,
there is a constraint on the phase structure of the 4D SU(N) pure Yang-Mills theory by a ’t Hooft
anomaly involving the CP and center symmetries at 𝜃 = 𝜋 [1]. The constraint is consistent with
the well-known scenario at large 𝑁 [2], where the theory at 𝜃 = 𝜋 is confined with spontaneously
broken CP at low temperature and then has a transition to deconfined phase with restored CP at a
finite temperature. However, it is highly nontrivial whether or not this structure persists for small
𝑁 since there are various ways to satisfy the anomaly matching condition. For instance, the theory
for small 𝑁 at low temperature may be deconfined or gapless as well as spontaneously broken CP.
Therefore it is an interesting challenge to investigate the phase structure by first-principle calculation
at the smallest 𝑁 i.e. 𝑁 = 2. The effect of the theta term is genuinely non-perturbative. The theory
with a theta term should be analyzed by non-perturbative calculations based on the lattice gauge
theory. However, the Monte Carlo simulation of the theory including the theta term is difficult due
to the sign problem.

The complex Langevin method (CLM) is one of the approaches which allow us to avoid the
sign problem [3–8]. We use the CLM to study 4D SU(2) gauge theory with the theta term since
its computational cost is cheaper than the other methods. The topological charge on the 4D lattice
is contaminated by short range fluctuations. Thus, we apply the stout smearing [9] to recover the
topological property. In this method, the effect of the smearing can be included dynamically. We
discuss the behavior of the topological charge for 𝜃 ≠ 0 in the CLM.

2. 4D SU(2) gauge theory with a theta term

We consider 4D SU(2) gauge theory on the Euclidean space. The action for the gauge field 𝐴𝑎
𝜇

(𝑎 = 1, 2, 3) (𝜇 = 1, · · · , 4) is given by

𝑆𝑔 =
1

4𝑔2

∫
𝑑4𝑥𝐹𝑎

𝜇𝜈𝐹
𝑎
𝜇𝜈 , (1)

where 𝑔 is the gauge coupling constant and 𝐹𝑎
𝜇𝜈 is the field strength

𝐹𝑎
𝜇𝜈 = 𝜕𝜇𝐴

𝑎
𝜈 − 𝜕𝜈𝐴

𝑎
𝜇 − 𝜖𝑎𝑏𝑐𝐴𝑏

𝜇𝐴
𝑐
𝜈 . (2)

The topological charge 𝑄 is defined by

𝑄 =
1

64𝜋2

∫
𝑑4𝑥𝜖𝜇𝜈𝜌𝜎𝐹

𝑎
𝜇𝜈𝐹

𝑎
𝜌𝜎 , (3)

which takes integer values unless the space has a boundary. We introduce the theta term 𝑆𝜃 = −𝑖𝜃𝑄,
and thus the action is 𝑆 = 𝑆𝑔 + 𝑆𝜃 . This theory has the 2𝜋 periodicity of the parameter 𝜃 ∈ R, since
the partition function

𝑍 =

∫
D𝐴𝑒−𝑆𝑔+𝑖 𝜃𝑄 (4)

is invariant under the shift 𝜃 → 𝜃 + 2𝜋.
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Next, we consider the lattice action for the numerical study. We introduce link variables
𝑈𝑛,𝜇 ∈ SU(2) and define plaquettes.

𝑃
𝜇𝜈
𝑛 = 𝑈𝑛,𝜇𝑈𝑛+�̂�,𝜈𝑈

−1
𝑛+�̂�,𝜇𝑈

−1
𝑛,𝜈 (5)

The index 𝑛 labels the lattice site and �̂� represents the unit vector along the 𝜇-th direction. Note
that we use 𝑈−1

𝑛,𝜇 instead of 𝑈†
𝑛,𝜇 to respect holomorphicity, which is necessary to justify the CLM.

We define the plaquette action by

𝑆𝛽 = − 𝛽

4

∑︁
𝑛

∑︁
𝜇≠𝜈

Tr𝑃𝜇𝜈
𝑛 (6)

with the coupling constant 𝛽. For the topological charge on the lattice, we consider the simplest
discretization [10] given by the so called "clover leaf" formula.

𝑄cl = − 1
32𝜋2

∑︁
𝑛

1
24

±4∑︁
𝜇,𝜈,𝜌,𝜎=±1

𝜖𝜇𝜈𝜌𝜎Tr
[
𝑃
𝜇𝜈
𝑛 𝑃

𝜌𝜎
𝑛

]
(7)

Here the orientation of the plaquette is generalize to negative directions. Correspondingly, the
anti-symmetric tensor 𝜖𝜇𝜈𝜌𝜎 also has negative indices, for example

1 = 𝜖1234 = −𝜖2134 = −𝜖 (−1)234 = · · · . (8)

Usually the topological charge𝑄cl does not take integer values on the lattice due to the discretization
effect. We can recover the topological property of the gauge field by eliminating short-range
fluctuations. Some smoothing techniques, such as the gradient flow, stout smearing and so on,
make the topological charge close to integers. In this study, we apply the stout smearing to the
complex Langevin method, which is discussed in section 4.

3. Complex Langevin method

Since the theta term is purely imaginary, Monte Carlo studies of the theory with 𝜃 ≠ 0 is
extremely difficult due to the sign problem. We avoid this problem by using the complex Langevin
method (CLM) [3–8], which is a generalization of the Langevin method to the system with a
complex action. Its computational cost grows linearly with the system size, so that we can easily
apply the CLM to large systems in a straightforward manner. In this section, we briefly review how
to apply the method to 4D SU(2) gauge theory.

In the CLM, we consider a fictitious time evolution of the dynamical variables, which is
described by the complex Langevin equation. The discretized complex Langevin equation for the
link variables is given by

𝑈𝑛,𝜇 (𝑡 + 𝜖) = exp
[
−𝑖𝜖𝐷𝑎

𝑛,𝜇𝑆𝜏
𝑎 + 𝑖

√
𝜖𝜂𝑛,𝜇 (𝑡)

]
𝑈𝑛,𝜇 (𝑡), (9)

where 𝜏𝑎 = 𝜎𝑎/2 are the generators of SU(2). The parameter 𝜖 ≪ 1 is a step size of the discretized
fictitious time. The differential operation 𝐷𝑎

𝑛,𝜇 𝑓 of the function 𝑓 (𝑈) with respect to the link
variables (Lie group elements) is defined by

𝐷𝑎
𝑛,𝜇 𝑓

(
𝑈𝑛,𝜇

)
= lim

𝜖→0

1
𝜖

[
𝑓

(
𝑒𝑖 𝜖 𝜏

𝑎

𝑈𝑛,𝜇

)
− 𝑓

(
𝑈𝑛,𝜇

) ]
. (10)
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The term including 𝐷𝑎
𝑛,𝜇𝑆 is called the drift term. The other term is a real Gaussian noise

𝜂𝑛,𝜇 (𝑡) = 𝜂𝑎𝑛,𝜇 (𝑡)𝜏𝑎 normalized by〈
𝜂𝑎𝑛,𝜇 (𝑡)𝜂𝑏𝑚,𝜈 (𝑡 ′)

〉
= 2𝛿𝑛𝑚𝛿𝜇𝜈𝛿𝑎𝑏𝛿𝑡𝑡′ . (11)

The drift term 𝐷𝑎
𝑛,𝜇𝑆 is no loner Hermitian for the complex action. Thus, the link variables

deviates from SU(2) in the complex Langevin simulation. We treat the link variables as SL(2,C)
elements instead of SU(2), which corresponds to complexifying the gauge field. For the complexified
configuration, the drift term and observables should also be complexified respecting holomorphicity.

The expectation value of O is calculated from an ensemble of configurations, which is given by
solving the complex Langevin equation numerically. We can obtain the expectation value ⟨O⟩CLM as
an average of O(𝑈) in the ensemble. However, it will not always agree with the correct expectation
value defined by the path integral. This problem is known as the wrong convergence of the CLM,
which occurs depending on the system, the parameter and the choice of the dynamical variables.
Although we cannot figure out whether the problem occurs or not a priori, there is a practical
criterion for the correct convergence [8]. We obtain the correct expectation value ⟨O⟩CLM = ⟨O⟩
only if the probability distribution of the drift term falls off exponentially or faster. We can easily
check the criterion by plotting the histogram of the magnitude 𝑢 of the largest drift defined by

𝑢 =
1
√

2
max
𝑛,𝜇

𝐷𝑎
𝑛,𝜇𝑆𝜏

𝑎
 , (12)

where the norm of the matrix is defined by ∥𝐴∥2 := Tr
[
𝐴†𝐴

]
.

We can stabilize the complex Langevin simulation by using a technique called "gauge cooling"
[11]. The condition of the correct convergence tends to be violated if the link variables deviates
far away from SU(2). The gauge cooling reduces the non-unitarity of link variables as much as
possible. Thus, it helps the condition to be satisfied. It was also shown that this procedure does not
affect any gauge invariant observable [7, 8]. We apply the gauge cooling at each Langevin step in
order to suppress a rapid growth of non-unitarity.

4. Stout smearing for the CLM

The theory with a theta term has the 2𝜋 periodicity of 𝜃 , which plays an important role in the
appearance of the nontrivial phase structure at 𝜃 = 𝜋. However, it is difficult to retain this property
on the lattice because the topological charge (7) defined by the naive discretization does not takes
integer values. It approaches integers only for the configurations sufficiently close to the continuum
limit. In fact, it is difficult to suppress the short range fluctuations enough simply by increasing
𝛽. Thus, we need a smearing method which makes the configuration sufficiently smooth even for
small 𝛽. In this work, we use the stout smearing [9], which is applicable to the CLM. In fact, its
application to the CLM was discussed in the analysis of QCD at nonzero baryon density [12]. In
this section, we review how to apply the stout smearing to the complex Langevin simulation of the
gauge theory with the theta term.

The procedure of the stout smearing is given by the iteration of the smearing step, starting from
the original configuration 𝑈𝑛,𝜇.

𝑈𝑛,𝜇 = 𝑈
(0)
𝑛,𝜇 → 𝑈

(1)
𝑛,𝜇 → · · · → 𝑈

(𝑁𝜌)
𝑛,𝜇 = �̃�𝑛,𝜇 (13)
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After 𝑁𝜌 iterations we obtain the smeared configuration �̃�𝑛,𝜇. In one (isotropic) smearing step from
𝑘 to 𝑘 + 1, the link variable 𝑈 (𝑘)

𝑛,𝜇 ∈ SL(2,C) is mapped to 𝑈
(𝑘+1)
𝑛,𝜇 ∈ SL(2,C) defined by following

formulae.
𝑈

(𝑘+1)
𝑛,𝜇 = 𝑒𝑖𝑌𝑛,𝜇𝑈

(𝑘)
𝑛,𝜇 (14)

𝑖𝑌𝑛,𝜇 = − 𝜌

2
Tr

[
𝐽𝑛,𝜇𝜏

𝑎
]
𝜏𝑎 (15)

𝐽𝑛,𝜇 = 𝑈𝑛,𝜇Ω𝑛,𝜇 − Ω̄𝑛,𝜇𝑈
−1
𝑛,𝜇 (16)

Ω𝑛,𝜇 =
∑︁

𝜎 (≠𝜇)

(
𝑈𝑛+�̂�,𝜎𝑈

−1
𝑛+�̂�,𝜇𝑈

−1
𝑛,𝜎 +𝑈−1

𝑛+�̂�−�̂�,𝜎𝑈
−1
𝑛−�̂�,𝜇𝑈𝑛−�̂�,𝜎

)
(17)

Ω̄𝑛,𝜇 =
∑︁

𝜎 (≠𝜇)

(
𝑈𝑛,𝜎𝑈𝑛+�̂�,𝜇𝑈

−1
𝑛+�̂�,𝜎 +𝑈−1

𝑛−�̂�,𝜎𝑈𝑛−�̂�,𝜇𝑈𝑛+�̂�−�̂�,𝜎

)
(18)

The parameter 𝜌 > 0 should be chosen appropriately, depending on the system.
We use the topological charge (7) calculated from the smeared configuration �̃�𝑛,𝜇

𝑄 := 𝑄cl(�̃�) (19)

to define the theta term 𝑆𝜃 = −𝑖𝜃𝑄 on the lattice. For the complex Langevin simulation, we need
to calculate the drift term 𝐷𝑎

𝑛,𝜇𝑆𝜃 from the theta term. Although 𝑆𝜃 is a complicated function of
the original link variable 𝑈𝑛,𝜇, it is possible to calculate the drift force

𝐹𝑛,𝜇 = 𝑖𝜏𝑎𝐷𝑎
𝑛,𝜇𝑆𝜃 (20)

by reversing the smearing steps (13). We define the drift force for the link variables 𝑈 (𝑘)
𝑛,𝜇 as

𝐹
(𝑘)
𝑛,𝜇 = 𝑖𝜏𝑎𝐷

(𝑘)𝑎
𝑛,𝜇 𝑆𝜃 , (21)

where 𝐷 (𝑘)𝑎
𝑛,𝜇 represents a differential operation with respect to𝑈 (𝑘)

𝑛,𝜇. As a first step to calculate (20),
the calculation of the drift force �̃�𝑛,𝜇 = 𝐹

(𝑁𝜌)
𝑛,𝜇 for the smeared link �̃�𝑛,𝜇 = 𝑈

(𝑁𝜌)
𝑛,𝜇 is straightforward.

Once we obtain the initial drift force �̃�𝑛,𝜇, the subsequent ones are given by the map from 𝐹
(𝑘)
𝑛,𝜇 to

𝐹
(𝑘−1)
𝑛,𝜇 iteratively.

�̃�𝑛,𝜇 = 𝐹
(𝑁𝜌)
𝑛,𝜇 → 𝐹

(𝑁𝜌−1)
𝑛,𝜇 → · · · → 𝐹

(0)
𝑛,𝜇 = 𝐹𝑛,𝜇 (22)

The map of the drift force is given by the following formulae, where the final step from 𝐹 ′
𝑛,𝜇 = 𝐹

(1)
𝑛,𝜇

to 𝐹𝑛,𝜇 = 𝐹
(0)
𝑛,𝜇 is shown as an example.

𝐹𝑛,𝜇 = 𝑒−𝑖𝑌𝑛,𝜇𝐹 ′
𝑛,𝜇𝑒

𝑖𝑌𝑛,𝜇 + 𝜌Tr
[
(𝑈𝑛,𝜇𝑀𝑛,𝜇 + �̄�𝑛,𝜇𝑈

−1
𝑛,𝜇)𝜏𝑎

]
𝜏𝑎 (23)

𝑀𝑛,𝜇 = −Ω𝑛,𝜇Λ𝑛,𝜇

+
∑︁
𝜈 (≠𝜇)

[
𝑈𝑛+�̂�,𝜈𝑈

−1
𝑛+�̂�,𝜇 (𝑈

−1
𝑛,𝜈Λ𝑛,𝜈 + Λ𝑛+�̂�,𝜇𝑈

−1
𝑛,𝜈)

+𝑈−1
𝑛+�̂�−�̂�,𝜈𝑈

−1
𝑛−�̂�,𝜇 (Λ𝑛−�̂�,𝜇 − Λ𝑛−�̂�,𝜈)𝑈𝑛−�̂�,𝜈

−Λ𝑛+�̂�,𝜈𝑈𝑛+�̂�,𝜈𝑈
−1
𝑛+�̂�,𝜇𝑈

−1
𝑛,𝜈 +𝑈−1

𝑛+�̂�−�̂�,𝜈Λ𝑛+�̂�−�̂�,𝜈𝑈
−1
𝑛−�̂�,𝜇𝑈𝑛−�̂�,𝜈

]
(24)
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�̄�𝑛,𝜇 = −Λ𝑛,𝜇Ω̄𝑛,𝜇

+
∑︁
𝜈 (≠𝜇)

[
(Λ𝑛,𝜈𝑈𝑛,𝜈 +𝑈𝑛,𝜈Λ𝑛+�̂�,𝜇)𝑈𝑛+�̂�,𝜇𝑈

−1
𝑛+�̂�,𝜈

+𝑈−1
𝑛−�̂�,𝜈 (Λ𝑛−�̂�,𝜇 − Λ𝑛−�̂�,𝜈)𝑈𝑛−�̂�,𝜇𝑈𝑛+�̂�−�̂�,𝜈

−𝑈𝑛,𝜈𝑈𝑛+�̂�,𝜇𝑈
−1
𝑛+�̂�,𝜈Λ𝑛+�̂�,𝜈 +𝑈−1

𝑛−�̂�,𝜈𝑈𝑛−�̂�,𝜇Λ𝑛+�̂�−�̂�,𝜈𝑈𝑛+�̂�−�̂�,𝜈
]

(25)

Λ𝑚,𝜈 = Tr
[
Λ̂𝑚,𝜈𝜏

𝑏
]
𝜏𝑏 (26)

Λ̂𝑚,𝜈 = − 1
2𝜅2

𝑚,𝜈

(
1 −

sin 2𝜅𝑚,𝜈

2𝜅𝑚,𝜈

)
Tr

[
𝐹 ′
𝑚,𝜈𝑖𝑌𝑚,𝜈

]
𝑖𝑌𝑚,𝜈 +

sin 𝜅𝑚,𝜈

𝜅𝑚,𝜈

𝑒−𝑖𝑌𝑚,𝜈𝐹 ′
𝑚,𝜈 (27)

𝜅𝑛,𝜇 =

√︃
− det𝑌𝑛,𝜇 (28)

Note that 𝑌𝑛,𝜇, Ω𝑛,𝜇 and Ω̄𝑛,𝜇 are defined by (15), (17) and (18) respectively. They are calculated
from 𝑈𝑛,𝜇 in this case. The drift term calculated in this way respects the holomorphicity. The
calculation time and the memory size required for the simulation are proportional to the number of
steps 𝑁𝜌.

5. Result of the CLM

In this section, we show the results of the complex Langevin simulation. So far, we have found
that the CLM using the naive definition (7) of the topological charge without the smearing works in
the high-temperature region (deconfined phase). As a first step, we focus on the high-temperature
region and try to see the effect of the stout smearing on the topological charge.

Before introducing the theta term, we check the effect of the smearing by changing the smearing
parameters for 𝜃 = 0. The number of steps 𝑁𝜌 and the step size 𝜌 should be large enough to eliminate
the short range fluctuations. However, it is difficult to increase 𝑁𝜌 a lot since the calculation time
and the memory size increase with 𝑁𝜌. If 𝜌 is too large, the nontrivial topological excitation will
be destroyed. For 𝛽 > 2.4, which corresponds to the high-temperature region in our setup, we
find that 𝑁𝜌 = 20 is enough to recover the topological property. In figure 1, we show the history
of the topological charge defined by (19) in the real Langevin simulation for 𝜃 = 0. There are
three series of data with 𝜌 = 0, 0.06 and 0.1. We plot the topological charge without the smearing
namely 𝜌 = 0 for comparison. The topological charge with 𝜌 = 0 is noisy, and it is difficult to see
the topological property. Once we introduce the smearing, we can see the transitions between the
topological sectors clearly.

Next, we show the results of the complex Langevin simulation for 𝜃 = 𝜋/4. In this simulation,
the lattice size is 243 × 4, and the smearing parameters are 𝑁𝜌 = 20 and 𝜌 = 0.06. In figure 2, we
show the histogram of the magnitude 𝑢 of the largest drift term defined in (12). The distribution
falls off rapidly for 𝛽 = 2.55, but it does not for 𝛽 = 2.5. Thus, the criterion for correct convergence
is satisfied only for 𝛽 = 2.55. Typically, the coupling constant 𝛽 should be large enough to satisfy
the criterion. We found that the CLM works if 𝛽 ≳ 2.55 for 𝜃 = 𝜋/4 on the 243 × 4 lattice.

In figure 3, we show the history of the topological charge for 𝛽 = 2.55. Since the gauge group
is extended to SL(2,C) in the CLM, the topological charge has an imaginary part in general. We plot
both of the real part and the imaginary part. There are some topological excitations in the history of
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Figure 1: The history of the topological charge defined by (19) in the Langevin simulation for 𝜃 = 0. The
lattice size is 243 × 4, and the coupling constant is 𝛽 = 2.5. The horizontal axis is the fictitious time 𝑡 of the
Langevin simulation.
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Figure 2: The histogram of the maximum drift term (12) for 𝜃 = 𝜋/4 in log scale. The horizontal axis is
log10 𝑢. The lattice size is 243 × 4, and the smearing parameters are 𝑁𝜌 = 20 and 𝜌 = 0.06.

Re𝑄. The imaginary part vanishes after the smearing in most cases, but it increases rapidly when
the real part changes.

The expectation value of the topological charge has a nonzero imaginary part if CP is broken.
Since the theta term breaks CP explicitly for 𝜃/𝜋 ∉ Z, it is consistent that Im𝑄 becomes nonzero in
our simulation. We find that the fluctuation of Re𝑄 is necessary to obtain the nonzero Im𝑄. Indeed,
the imaginary part are close to zero while the configuration stays in a single topological sector.

We also find that the rapid growth of Im𝑄 makes the simulation unstable. The imaginary part
originates from the non-unitarity of the configuration, which can be a source of the large drift. We
need to set 𝛽 large enough to avoid this problem. However, the fluctuation of𝑄 is highly suppressed
for larger 𝛽, and the autocorrelation time of 𝑄 becomes longer than the simulation time. It is known
as freezing of the topological charge, which causes a problem with the ergodicity. Therefore, it is
difficult to avoid the large drift simply by increasing 𝛽 further.
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Figure 3: The history of the topological charge for 𝜃 = 𝜋/4. The upper plot show the real part and the
lower plot show the imaginary part. The lattice size is 243 × 4, and the coupling constant is 𝛽 = 2.55. The
horizontal axis is the fictitious time 𝑡 of the Langevin simulation.

6. Summary

The sign problem prevents us from studying gauge theories with a theta term by the Monte
Carlo simulation. In this work, we applied the complex Langevin method (CLM) to 4D SU(2)
gauge theory to avoid the problem. We found that the criterion for correct convergence of the CLM
is satisfied in the high temperature region. However, the naively defined topological charge does
not take integer values due to the contamination by short range fluctuations. For this reason, we
introduce the stout smearing in the CLM in order to recover the topological property. The effect
of the smearing can be included in the Langevin dynamics itself as well as in observables. We
confirmed that the real part of the topological charge becomes close to an integer after the smearing.
On the other hand, the imaginary part vanishes mostly, but it grows rapidly as the real part changes.
This behavior is consistent with the topological nature of the theory, although it is difficult to deal
with in the numerical simulation.

We need to increase 𝛽 to suppress the large drift. On the other hand, we cannot increase it due
to the topology freezing. It seems to be necessary to resolve either of the topology freezing or the
large drift in the CLM. However, it is possible that the appearance of large drift is related to the
topology change, as we found in our previous study of 2D U(1) gauge theory [13]. In that case, we
need to modify the boundary condition or try some possible ways to suppress the large drifts, such
as improving the gauge cooling or the smearing method.
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