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The 𝑂 (3) non-linear sigma model (NLSM) is a prototypical field theory for QCD and ferro-
magnetism, and provides a simple system in which to study topological effects. In lattice QCD,
the gradient flow has been demonstrated to remove ultraviolet singularities from the topological
susceptibility. In contrast, lattice simulations of the NLSM find that the topological susceptibility
diverges in the continuum limit, even in the presence of the gradient flow. We introduce a 𝜃-term
and analyze the topological charge as a function of 𝜃 under the gradient flow. Our results show
that divergence persists in the presence of the flow, even at non-zero 𝜃.
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1. Introduction

Spin models provide a framework for understanding the physics of strongly-coupled systems,
from solid state and condensed matter systems to nuclear and particle physics. The non-linear sigma
model (NLSM), in particular, has provided a rich arena in which to study nonperturbative effects.
In solid-state systems, this model describes Heisenberg ferromagnets [1] and in nuclear physics, it
acts as a prototype for quantum chromodynamics (QCD), the gauge theory of the strong nuclear
force. In general, the NLSM shares key features with non-Abelian gauge theories such as QCD,
including a mass gap and asymptotic freedom [2], and has proved a useful model for exploring the
effect of these properties in simple systems.

We consider the 𝑂 (3) NLSM in 1+1 dimensions (one dimension of space, one dimension
of time). This theory may exhibit topological effects, such as instantons, which are classical
field solutions at local minima of the action in Euclidean space. These topologically protected
solutions cannot evolve into the vacuum state via local fluctuations. This property has become
critically important to understanding several applications of quantum field theories in cosmology
and high energy physics, such as the existence of magnetic monopoles [3] and the mass of the 𝜂′

Goldstone boson [4, 5]. Additionally, topological stability may become a key tool for fault-tolerant
quantum computers [6]. In these devices, topology protects the delicate quantum states necessary
for information processing.

The protection of topological instantons in the 1+1 𝑂 (3) NLSM relies on a vanishing topo-
logical susceptibility. However, the convergence properties of this quantity are still unclear [7, 8].
Analytical arguments suggest the topological susceptibility should approach zero in the continuum
limit [9], but numerical results on the lattice, summarized in [7], indicate a logarithmic divergence
and support the semi-classical picture of small-size instantons generating the divergence. Similar,
but ultimately inconclusive, results were found for the equivalent CP1 model in the presence of
an alternative smoothing procedure, “cooling”, in [8]. To elucidate this apparent contradiction,
we apply the gradient flow, a local smearing of operators which preserves gauge invariance. In
quantum chromodynamics, this technique has corroborated a previous analytical result [10] by
removing ultraviolet divergences on the lattice [11]. This success has motivated the gradient flow
to as a tool to define the continuum limit of the topological susceptibility in the 1+1 𝑂 (3) NLSM.
Despite this intuition, recent studies demonstrate that the topological susceptibility still diverges in
the continuum limit in the presence of the ultraviolet smearing procedures [7, 8].

We also study a second perspective on the topological susceptibility arising from the introduc-
tion of a 𝜃-term into the field Lagrangian. This term drives the vacuum state into a topological phase
[12], and the resulting theory may exhibit confining, walking, and conformal behaviors at different
values of 𝜃 [13]. Differentiating the partition function with respect to 𝜃 yields a value proportional
to the topological susceptibility. The effect of nonzero 𝜃 on the theory therefore should reflect the
divergence of the susceptibility in the continuum limit. In this work we verify the divergence of the
topological susceptibility and develop a clearer picture of how the 𝜃-term affects the topology of
the 1+1 𝑂 (3) NLSM.

To study the topological qualities of the NLSM numerically, we first implement a Markov
chain Monte Carlo simulation using Metropolis and Wolff cluster [14] algorithms. The gradient
flow has no exact solution in the NLSM, so we implement a numerical solution using a fourth-order
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(a) Visualization of a plaquette 𝑥∗. The dot-
ted line separates the plaquette into two signed
areas, used to define the topological charge den-
sity 𝑞(𝑥∗). Arrows represent the order of signed
area.

®𝑒(𝑥1)®𝑒(𝑥2)

®𝑒(𝑥3)

𝐴

(b) The signed area of a triangle in target space.

Figure 1

Runge-Kutta approximation with automatic step sizing.

2. The non-linear sigma model

We study the 𝑂 (3) NLSM in two dimensions, defined by the Euclidean action

𝑆𝐸 =
𝛽

2

∫
𝑑2𝑥

2∑︁
𝑖=1

(𝜕𝑖 ®𝑒 )2
,

where ®𝑒 is 3-component real vector constrained by | ®𝑒 | = 1 and 𝛽 is the inverse coupling constant.
Following [9], we define the topological charge density, 𝑞(𝑥∗), for each plaquette 𝑥∗ such that the
total topological charge is

𝑄 =
∑︁
𝑥∗

𝑞(𝑥∗), (1)

where
𝑞(𝑥∗) = 1

4𝜋

[
𝐴

(
®𝑒(𝑥1), ®𝑒(𝑥2), ®𝑒(𝑥3)

)
+ 𝐴

(
®𝑒(𝑥1), ®𝑒(𝑥3), ®𝑒(𝑥4)

)]
. (2)

Here, 𝐴 is the signed area of the triangle in target space. Visually, the three points in each of the
two terms in Eq. 2 form halves of the plaquette, which we represent in Fig. 1a. The resultant signed
area is represented in Fig. 1b. The value 𝐴 is defined if 𝐴 ≠ 0, 2𝜋, or in other words, as long as
the three points on the sphere are distinct and do not form a hemisphere. In numerical calculations,
these points can be ignored. Therefore, we impose that the signed area is defined on the smallest
spherical triangle, or −2𝜋 < 𝐴 < 2𝜋.

From the definition of 𝑄, we define the topological susceptibility as

𝜒𝑡 ≡
1
𝐿2

(
〈𝑄2〉 − 〈𝑄〉2

)
. (3)

Since 〈𝑄〉 = 0 in the NLSM, this quantity becomes

𝜒𝑡 =
1
𝐿2

∑︁
𝑥∗

〈𝑞(𝑥∗)𝑞(0)〉, (4)

where we have assumed periodic boundary conditions. In the continuum limit, the topological
susceptibility diverges owing solely to the 𝑥∗ = 0 term [7], a divergence that also exists in QCD
[11]. In the semiclassical approximation, this divergence arises from small-size instantons [15].
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As an extension, we can generalize the NLSM to have a nonzero vacuum expectation value for
the topological charge (〈𝑄〉 ≠ 0), manifested by the addition of a “𝜃-term”:

𝑆[ ®𝑒 ] → 𝑆[ ®𝑒 ] − 𝑖𝜃𝑄 [ ®𝑒 ] .

defining the “nontrivial” NLSM. We find that the topological susceptibility in the trivial case
depends on the charge in the nontrival model:

𝜒𝑡 ∝
𝑑 Im〈𝑄〉

𝑑𝜃

����
𝜃=0

(5)

This final relation will allow us to probe the behavior of the topological susceptibility in the trivial
NLSM by considering the topological charge in the nontrivial theory.

3. Gradient flow

To resolve the ultraviolet divergence in the 𝜒𝑡 , we adopt a technique known as “smearing”, a
local averaging of the field [16]. Specifically, we use the gradient flow [17–21], which introduces
a new half-dimension1 called “flow time”. The flow time 𝜏 parameterizes the smearing such
that an evolution in flow time corresponds to suppressing ultraviolet divergences, pushing field
configurations toward classical minima of the action.

We can choose any flow time equation that drives the field towards a classical minimum.
Following [7, 22, 23], we can define the gradient flow for the NLSM via the differential equation

𝜕𝜏 ®𝑒(𝜏, 𝑥) =
(
1 − ®𝑒(𝜏, 𝑥) ®𝑒(𝜏, 𝑥)𝑇

)
𝜕2 ®𝑒(𝜏, 𝑥), (6)

which we solve numerically with the boundary condition ®𝑒(𝜏 = 0, 𝑥) = ®𝑒(𝑥).

4. Numerical implementation

We implement a numerical Monte Carlo method to study the NLSM in two dimensions using
the discretized action

𝑆lat [ ®𝑒 ] =
∑︁
𝑖

2 −
2∑︁

𝜇=0
®𝑒(𝑥 + 𝑎�̂� ) · ®𝑒(𝑥)

 (7)

where 𝑎 is a lattice constant and �̂� are the Euclidean unit vectors. We generate configurations using
the Metropolis [24] and Wolff cluster [14] algorithms.

We thermalize the configurations with 1000 sweeps, with a cluster update every five sweeps,
and illustrate a sample Markov chain in Fig. 2, where we plot the action as a function of Metropolis
sweeps. We use Wolff’s automatic windowing procedure [25] to estimate the autocorrelation times
for various observables, such as the magnetic susceptibility 𝜒𝑚. We measure observables every 50
sweeps for each simulation.

We apply the gradient flow equation (Eq. 6) replacing the continuous Laplacian operator 𝜕2

with a discrete analogue

𝜕2 ®𝑒(𝜏, 𝑥) = ®𝑒(𝜏, 𝑥 + 𝑎𝑡) + ®𝑒(𝜏, 𝑥 − 𝑎𝑡) + ®𝑒(𝜏, 𝑥 + 𝑎𝑥) + ®𝑒(𝜏, 𝑥 − 𝑎𝑥) − 4®𝑒(𝑡, 𝑥).
1The term “half-dimension” indicates that the flow time is exclusively positive.
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(a) 𝐿 = 24 (b) 𝐿 = 404

Figure 2: Plots of the action, 𝑆, as a function of Monte Carlo time, starting with a random NLSM lattice.

and numerically solving the differential equation using a fourth-order Runga-Kutta approximation.
To increase the efficiency of this algorithm, we implement the step-doubling algorithm to adaptively
adjust the step size. If the error of a Runge-Kutta step is greater than the tolerance, the same step
is repeated with half the step size. Alternatively, if the error is less than half of the tolerance, the
step size is doubled for the next calculation. Finally, if the step size is greater than the distance
to the next measurement, that distance is used as the step size, using the normal value afterwards.
Otherwise, the algorithm proceeds with the consistent step size.

To calculate the error, we compare one lattice ®𝑒1 produced using a step of size 2ℎ with another
lattice ®𝑒2 produced via two steps of size ℎ. The error Δ can be estimated to up the fifth order of ℎ
as [26]

Δ =
1
15

√︄∑︁
𝑥

| ®𝑒2(𝑥) − ®𝑒1(𝑥) | (8)

The tolerance used in this work is Δ𝑚𝑎𝑥 = 0.01.

5. Results

We check our numerical implementation of the NLSM by comparison to studies of the internal
energy and magnetic susceptibility in Refs. [9] and [7]. Following [9], we approximate the internal
energy in the strong (𝛽 < 1) and weak (𝛽 > 2) regimes as

𝐸 ≈
4 − 4𝑦 − 8𝑦3 − 48

5 𝑦5 𝛽 < 1
2
𝛽
+ 4

𝛽2 + 0.156 1
𝛽3 𝛽 > 2,

(9)

where 𝑦 = coth 𝛽 − 1/𝛽. We compare this analytical result and simulated values of 𝜒𝑚 with
the Monte Carlo simulation in Fig. 3. The slight discrepancy between numerical results in the
cross-over region provides an estimate of unquantified systematic uncertainties.

We also seek to confirm the results from Bietenholz et al. [7]. In addition, we show the
topological susceptibility 𝜒𝑡 diverges in the continuum limit even at finite flow time. Since 𝜒𝑡

is in units of inverse distance squared, we multiply by , to achieve a scale-invariant value 𝜒𝑡𝜉
2
2 .
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Figure 3: Comparison with [9]. First panel: internal energy compared with analytic energy (Eq. 9). Second
panel: magnetic susceptibility compared with literature values.

Additionally, we use a parameter 𝑡0 to scale the flow time such that 𝑡0 ∼ 𝐿2. In our Monte Carlo
simulation, we utilize the same values as [7] for 𝜉2, 𝛽 and 𝑡0.

In Fig. 4 we plot the dimensionless variable 𝜒𝑡𝜉
2
2 , where 𝜉2

2 is the square of the second moment
correlation length, as a function of flow time 𝜏/𝑡0, with 𝑡0 ∼ 𝐿2. Fig. 4 shows that the flow

Figure 4: Dimensionless magnetic susceptibility, 𝜒𝑡𝜉2
2 , as a function of flow time 𝜏/𝑡0. Simulation run with

10,000 measurements every 50 sweeps, 1,000 sweep thermalization.

time effectively decreases the topological susceptibility by dampening high-momentum modes. To
analyze the divergence of 𝜒𝑡 in the continuum limit, we plot 𝜒𝑡𝜉2

2 as a function of lattice size 𝐿, for
𝜏 = 0 and 𝜏 = 5𝑡0, in Fig. 5. We fit the data with two fit functions: a log fit

𝜒𝑡𝜉
2
2 = 𝑎log(𝑏𝐿 + 𝑐); (10)

and a power law fit
𝜒𝑡𝜉

2
2 = 𝑎𝐿𝑏 + 𝑐. (11)

We calculate the parameters to these functions using two independent fitting methods, the lsqfit
package [27] and the scipy curve_fit tool [28]. We quote results from [27]. For flow time
𝜏 = 5𝑡0, the 𝜒2/𝐷𝑂𝐹 for the logarithmic and power fits are 6.2 and 5.5 respectively, which
potentially indicates underestimated systematic uncertainties. Both of these functions diverge as
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(a) 𝜏 = 0 (b) 𝜏 = 5𝑡0

Figure 5: 𝜒𝑡𝜉
2
2 as a function of 𝐿. We fit the data with both a logarithmic and power fit. Simulation run

with 10,000 measurements, once every 50 sweeps, 1,000 sweep thermalization. In the 𝜏 = 0 case, we have
compared our result with the curve fit found in [7].

𝐿 → ∞, indicating that the topological susceptibility also diverges in the continuum limit, in line
with the results of [7]. The origin of the discrepancies between our results and [7] will be studied
in future work.

We calculate the imaginary part of 〈𝑄〉 for arbitrary 𝜃 and plot the results for three values of the
flow time 𝜏 in Fig 6. These plots demonstrate the divergence of the continuum limit in the 𝜏 = 0 and

Figure 6: Imaginary part of 〈𝑄〉 as a function of 𝜃. Simulation run with 10,000 measurements, measurements
very 50 sweeps, 1,000 sweep thermalization. Note the different scaling of the 𝑦-axis.

the flowed regimes. In the 𝜏 = 0 case, the slope increases sharply, reflecting the rapid divergence of
𝜒𝑡 . However in the flowed regime, this divergence is much slower, reflecting the decreased values
of 𝜒𝑡 shown in Fig. 4.

6. Summary

The topological behavior of the non-linear sigma model has been a topic of debate for several
decades. Berg and Lüscher [9] originally highlighted the discrepancy between the renormalization
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group hypothesis, that the topological susceptibility is zero in the continuum limit, and the numerical
results of nonperturbative calculations, supported by a semi-classical instanton picture, which
indicate that the topological susceptibility is ill-defined in the continuum limit. They suggested
three possible causes:

1. The definition of the topological charge does not scale to the continuum.
2. There are ultraviolet divergences.
3. There is no reasonable continuum limit.

Our results at finite gradient flow time, for both 𝜃 = 0 and at non-zero 𝜃, support the numerical
results of [7] at 𝜃 = 0 and indicate the presence of a divergence in the continuum limit. Pre-
reflectively, this may suggest that ultraviolet divergences are not the origin of this divergence,
because the flow suppresses ultraviolet fluctuations and introduces no new divergences in the
renormalized NLSM [29]. The story of this divergence is, however, more subtle and is consistent
with divergences at finite flow time. The topological susceptibility (and all other even moments of
the topological charge) are divergent in the continuum limit, while differences between cumulants
of the topological charge are finite [13]. This indicates that there is a single, nonperturbatively
generated divergence that can be removed by introducing a single counter-term in the Lagrangian,
proportional to the identity. In the absence of any such counter-term, the NLSM at zero flow time is
not completely renormalized, and introducing the flow cannot remove this divergence. One future
application of the gradient flow to the study of the topology of the NLSM, could be, however, to
define a nonperturbative renormalization scheme for this counter term, and study the corresponding
running of its coupling.
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