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1. Introduction

https://github.com/paboyle/Grid/

Grid is a software package that has for some time provided common operations and algorithms
that underpin many lattice QCD simulations [1, 2]. It was initially developed[2] to support Single
Instruction Multiple Data (SIMD) execution on a wide variety multicore processors by Intel, AMD,
IBM and ARM, making use of SIMD intrinsics to deliver excellent performance in compiled code.

Modern GPU’s provide powerful alternatives to CPU’s and deliver excellent performance and
power performance for a number of reasons. Firstly, an accelerator architecture may be more
specialised than processor cores targetting best general purpose single thread performance (and a
full range of features). Secondly, by using a private memory system more aggressive technology
decisions may be made. A host CPU is retained for executing general code that is not well handled
by a GPU thread, and an offload model is used where critical loops and data are marked by software
for execution and placement on the accelerator device.

All GPU’s at this time present a parallel multi-dimensional (1d to 3d) loop as the primitive
looping construct. Similar to the Connection Machine computer, the machine model is that each
instance of the parallel loop body is presented as a different virtual machine or thread. However
syntactically the implementation is less elegant without data parallel expressions in the high level
languge. Fortunately Grid provides such a high level interface which is implemented on top of an
internal parallel loop construct.

Although GPU’s are fundamentally SIMD archictures, addressing modes and masked execution
are cleverly used to obscure this fact and present a scalar processing model to the programmer, called
“Single Instruction Multiple Thread” (SIMT). In SIMT, a single instruction fetch unit controls
multiple logical threads, typically a number of O(32). When some threads choose yes, and other
threads choose no the divergence leads to loss of parallel throughput.

Accesses to thread private data (stack, local memory and what the programmer would think
of as local variables - if not in registers) are addressed in a way that efficiently interleaves accesses
to corresponding local memory locations by each thread in a physical memory array. One might
imagine that electronically the “thread” index withing a parallel execution group dictates the byte
address within a hardware SRAM data bus. This ensures that when a group of software “threads”
concurrently execute the same instruction, and they all access the matching variable on their
respective stack or local memory. The accesses will be transferred as a physically contiguous data
beat even though the virtual addresses are relative to a stack pointer or in a local memory space. !

The challenge of writing high performance and portable code is three fold. Firstly, the syntax
for offloading loops depends on the underlying software environment. We have managed to identify
a suite of abstractions that are both compact and adequate to write portable and performant software
with a single interface. Secondly, the somewhat larger challenge is to write a single programme
that captures the differing semantics between SIMD and SIMT execution models. Our goal is to
preserve Thirdly placing data and managing data motion should be simple and even transparent
when using Grid data parallel operations.

1One might even imagine that conventional microprocessors could, in principle, add addressing modes that facilitate
a similar SIMT model in their vector extensions.
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In this proceedings we highlight the changes made to Grid to obtain cross-platform accelerator
portability and we give some early performance results on modern variety of architectures. We
demonstrate that the code is provably optimal on Nvidia A100 GPUs for the Domain Wall Fermion
operator.

2. Acceleration abstraction

The generalisation of Grid to GPU’s required us to introduce several related technologies. The
target is to define an abstraction that can cover HIP, SYCL and CUDA

* Offload primitives and device function attributes

* Memory allocation primitives

» Software managed device cache for host memory regions

* Distinguish accessors (views) of lattice objects from the storage container
* Abstraction capturing SIMT and SIMD models in a single interface

» Updating the Grid Expression Template engine

Grid already had a parallel for construct used to target OpenMP threaded loops on multicore
CPUs. This was generalised, using a similar C++ Lambda function object approach to that taken
by SYCL[4], Kokkos[5] and RAJA[6] to capture loop bodies and pass to a device. Care must be
taken to ensure all data referenced by the loop body is accessible to the device and we will describe
how this is performed later.

Covariant programming: The optimal data layout changes with parallelism model. Both
SIMD and SIMT are electronically vector architectures and a partial “struct-of-array” transformation
is needed in data arrays in memory. However they semantically differ in the behaviour of local
variables within functions. In GPU each “lane” of the underlying SIMD executes a different logical
instance of the same function, and thus processes scalar items, while in a CPU local variables remain
(short) vector data types. Optimal software cannot be invariant when the architecture is changed,
and rather to target both efficiently it is necessary to design a programming style that transforms
covariantly with the architecture, as in the table below.

Model Memory Thread

Scalar Complex Spinor[4][3] Complex Spinor[4][3]

SIMD | Complex Spinor[4][3][N] | Complex Spinor[4][3][N]

SIMT | Complex Spinor[4][3][N] Complex Spinor[4][3]
Grid introduces transfer functions coalescedRead and coalescedWrite that map between these

layouts, and lattice objects have an additional accessor method operator() that performs this
translation and minimises the syntactical changes between SIMD and SIMT loop bodies. C++11
added automatic type inference and the key to covariant programming is to not hard code the
datatypes of temporary variables in a loop, but to deduce the type from the return type of a
coalescedRead so that the loop body transforms with the architecture. We give an illustrative
example below of an opmitised routine and explain the elements in the following sections.
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template<class objl,class obj2,class obj3> inline
void mult(Lattice<objl> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
ret.Checkerboard() = lhs.Checkerboard();
autoView( ret_v , ret, AcceleratorWrite);
autoView( lhs_v , lhs, AcceleratorRead);
autoView( rhs_v , rhs, AcceleratorRead);
accelerator_for(ss,lhs_v.size(),objl::Nsimd(), {
decltype(coalescedRead(objl1())) tmp;
auto lhs_t = lhs_v(ss);
auto rhs_t = rhs_v(ss);
mult (&tmp,&lhs_t,&rhs_t);
coalescedWrite(ret_v[ss],tmp);

};

2.1 Internal API

The functionality of Grid was augmented with “accelerator’” primitives.

¢ Function attributes

accelerator
accelerator_inline

Parallel looping / offload

accelerator_for(iterl, numl, nsimd, ... )
accelerator_for2d(iterl, numl, iter2, num2, nsimd, ... )
accelerator_forNB, accelerator_for2dNB

uint32_t accelerator_barrier(); // device synchronise

¢ Parallelism control: Number of threads in thread block is acceleratorThreads*Nsimd
acceleratorInit();
uint32_t acceleratorThreads(void);
void acceleratorThreads(uint32_t);
void acceleratorSynchronise(void); // synch warp etc..
* Coalesced reading support
int acceleratorSIMTlane(int Nsimd); // my thread location
// Memory representation to stack representation
coalescedRead() /coalescedReadPermute()/coalescediirite()
¢ Reduction

template<class t> accelerator_sum(t *tp,uint64_t num)

* Memory management and motion
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void *acceleratorAllocShared(size_t bytes);

void *acceleratorAllocDevice(size_t bytes);

void acceleratorFreeShared(void *ptr);

void acceleratorFreeDevice(void *ptr);

void *acceleratorCopyToDevice(void *from,void *to,size_t bytes);

void *acceleratorCopyFromDevice(void *from,void *to,size_t bytes);
void *acceleratorCopyDeviceToDevice(void *from,void *to,size_t bytes);

2.2 Offload primitives and attributes

Grids internal API to acceleration is contained in a header Accelerator.h , and is itself a
fairly useful component. Generically the prefix accelerator isused in the functionality. CUDA
requires by default that device code be in “.cu” source files. This can be avoided with compiler flags
to insist that all C++ files contain CUDA code, and not renaming. CUDA and HIP have a compiler
model that requires that all accelerator functions be marked with a __device__ attribute.

For Grid code itself, handling this is not onerous: Grid has alwaysuseda strong_inline at-
tribute for high performance code, and globally renaming this attribute accelerator_inline as
amacro that on HIP and CUDA expands to give both device and inline attributes. The parallel_for con-
struct was replaced with distinguished thread_for which always executes on the host processor
under OpenMP and accelerator_for . These macros capture a loop body as a macro parameter
and on GPU targets form a hidden C++ lambda function object that executes one loop iteration.
The object is passed as a device lambda on HIP, SYCL and CUDA. Examples of the macro

implementation are shown in figure 1 and 2

/| CUDA specific // SYCL specific

accelerator_inline int acceleratorSIMTlane(int Nsimd) { accelerator_inline int acceleratorSIMTlane(int Nsimd) {
e return __spiry::initLocallnvocationld<3, cl::sycl::id<3>>()[2];

return threadldx.x; )

#define accelerator_for2d( iterl, numi, iter2, num2, nsimd, ... )
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
unsigned long nt=acceleratorThreads();
unsigned long unum1 = num1;
unsigned long unum2 = numz2;
cl::sycl::range<3> local {nt,1,nsimd};
cl::sycl::range<3> global{unum1,unum2,nsimd};

} \
\ %
\
} \
! \
\ \
(Iterator iterl,Iterator iter2,Iterator lane) mutable { \ \
\ cgh.parallel_for<class dslash>( \

\

! \

\ N

\

i 5

\

\

#define accelerator_for2d( iter1, num1, iter2, num2, nsimd, ... ).
{
typedef uint64_t Iterator;

auto lambda = [=] accelerator

—VA_ARGS_; clz:sycl:nd_range<3>(global,local),

k [=] (cl::sycl::nd_item<3> item) mutable {

int nt=acceleratorThreads(); autoiterl =item.get global id(0);

8 ; i = item.get_global_id(1);

dim3 cu_threads(acceleratorThreads(),1,nsimd); autoliter2 I_tem sl global I,d Y
TG SN auto lane = item.get _global id(2);

dim3 cu_blocks ((num1+nt-1)/nt,num2,1); \ {__VA_ARGS__};

i3

0

LambdaApply<<<cu_blocks,cu_threads>>>(num1,num2,nsimd,lambda); \
}

Figure 1: Macro implementation of kernel offload for CUDA and SYCL. Grid and user code use consistently
the accelerator_for construct. We emphasise that most user code uses either Grid functions or expression
template engine and only expert kernels use the accelerator_for . This is an internal implementation detail

that may be useful to others developing independent GPU codes.

2.3 Memory models and software managed cache

Grid can be compiled with two options for using GPU memory. The simplest (and earliest
port) was achieved using Unified Virtual Memory (UVM) where we assume that memory can be
allocated for lattice (and other) data that is accessible to both CPU code and the accelerator loops.
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// HIP specific // OpenMP specific
accelerator_inline int acceleratorSIMTlane(int Nsimd) { #define accelerator
return hipThreadIdx_z; #define accelerator_inline strong_inline

}
#define accelerator_for2d( iterl, numl, iter2, num2, nsimd, ... ) \ #define accelerator_for(iterator,num,nsimd, ... ) \
thread_for(iterator, num, { __VA_ARGS__ });
typedef uint64_t Iterator;
auto lambda = [=] accelerator
(Iterator iterl,Iterator iter2,Iterator lane ) mutable {
{ _VA_ARGS__;}

#define accelerator_for(iterator,num,nsimd, ... ) \
thread_for(iterator, num, { __VA_ARGS__ });

}
int nt=acceleratorThreads();

dim3 hip_threads(nt,1,nsimd);

dim3 hip_blocks ((numl+nt-1)/nt,num2,1);
hipLaunchKernelGGL (LambdaApply,hip_blocks,hip_threads,

#define accelerator_barrier(dummy)

#define accelerator_for2d(iterl, numl, iter2, num2, nsimd, ... )\
thread_for2d(iterl,numl,iter2,num2,{ _VA_ARGS__ });

P

0,0,
numl, num2,nsimd, lambda) ;

Figure 2: Macro implementation of kernel offload for HIP and OpenMP. Grid and user code use consistently
the accelerator_for construct. We emphasise that most user code uses either Grid functions or expression
template engine and only expert kernels use the accelerator_for. This is an internal implementation detail
that may be useful to others developing independent GPU codes.

This was found to perform reasonably well until, particularly on the Summit computer, the
total capacity of the GPU memory was exceeded and substantial slow down was seen when data
had to be evicted to make space for new data.

As a result we also implemented a MemoryManager object that maintains a software cache
of host memory on the device with a replacement algorithm under our control. This is inspired to
some degree by the SYCL “buffer” model but leaves code able to use pointers.

A key element is to separate Lattice objects into lattice containers which own the data, and
lattice views which contain pointers and the ability to dereference or access the data. A view is
obtained by calling a member function of the container. The view is a lightweight structure appro-
priate to be copied by value into a device kernel. The call to obtain the view must specify intent: one
of CpuRead, CpuWrite, AcceleratorRead or AcceleratorWrite. Under UVM compilation (—enable-
unified=yes) the operation is trivial. However under explicit data motion (—enable-unified=no) this
allows a software cache to be consistently maintained.

The MemoryManager contains two data structures: a table of cache entries, indexed by host
pointer and storing (possible) corresponding device pointer, region size, reference counters and a
state that is one of CpuDirty, AcceleratorDirty, Consistent or Empty. The sequence of view accesses
migrates a vector between host and device according to access intent and prior state. The whole
buffer is treated as a single entity and high performance memory copies between host and device
used. The total aggregate footprint available to Grid for this cache has a target high watermark
limit, controllable via a command line parameter —device-mem X (mb). If this high watermark will
be exceeded by moving data to the device, previously resident data is evicted to make space.

The cache data structure is implemented via an O(1) overhead hash table (std::unordered_map)
The victim selection implements a true “least recently used” algorithm. The LRU is maintained
using an O(1) double ended queue to maintain ordering. Any access removes an item from the
queue and replaces it at the front. As a power user feature, Lattice fields can be given one of two
priories with an “Advise” function. Large volume and infrequent data can be advised as infrequently
used, and made always a higher priority

Views are opened locally in a scope around an accelerator_for loop, and opening and closing
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the (reference counted) Views trigger the software cache operations. A convenience “autoView”
macro hides some of the syntactical overhead for closing. View management is automatic when
using the Grid Expression template engine.

2.4 Expression template engine

Grid has for some time had a flexible expression template engine. Updating this to work
efficiently under offload required some careful implementation. Grid builds a compound object
representing the abstract syntax tree (AST) of an expression, and a deferred evaluation function
performs the operations that this AST represents. The composite object built has to no longer store
references to the lattice containers (these would be host pointers!) but rather map these to accelerator
read view objects. The evalution of lattice leaf nodes in this expression tree were updated to return
a scalar element, the result of a coalesced read on the lattice object. Although very sophisticated
and carefully written C++ code, the modifications are actually rather modest and general expression
template user code works without modification.

3. Performance results

CUDA The Univeristy of Edinburgh and Juelich Supercomputer Centre have both recently
purchased ATOS systems based on nodes with four A100 Nvidia GPUs, AMD CPU’s and four
Mellanox HDR network interfaces. The system uses PCI express switches and gives good bus
performance between network and GPU memory.

Figure 3 displays the weak scaling of Grid on the Edinburgh “Tursa” and NERSC Perlmutter
(phase 1) systems. Phase 2 will shortly upgrade the network. We see that Perlmutter is currently
network limited but that Tursa has a balanced network provisioning that allows good weak scaling
at volumes per GPU of 24* and above. The network performance of the ATOS systems is shown in
a detailed microbenchmark in figure 4.

HIP We have run Grid but not yet fully optimised on the Spock system comprising 4 MI-100
AMD GPUs in ORNL. We obtain 1.3TF/s per GPU and 4TF/s on one four-GPU node. We have
been advised that performance patches from AMD will increase this, perhaps to 1.8TF/s on MI-100.
The Frontier system will install substantially faster MI-250 GPUs that the MI-100, and so we hope
that a final configuration Frontier node will deliver a similar performance to a Tursa node.

SYCL We have run on Intel DGX and Arctic Sound GPUs obtaining expected performance
consistent with the available memory bandwidth. We used a mixture of the pure SYCL 2020
standard for Grid but dropped to the “Level Zero” vendor specific API to access GPU-GPU copies
within a node.

4. Conclusion and outlook

Grid has been substantially reengineered to support both SIMD CPU and SIMT GPU execution
models. Of the planned Perlmutter, Frontier and Aurora systems in the US DOE open science
roadmap, all of them have distinct vendor native programming environments. Regardless Grid now
supports all of these and is expected to deliver good single GPU performance on each. Further,
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DWF Weak scaling performance on Tursa and Perlmutter (phase 1)
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Figure 3: We show the performance per node on two recent systems comprising 4 x Nvidia A100 GPUs
per node. The Atos Sequana “Tursa” system in Edinburgh (an identical technology to the Juelich Booster
system), and the phase one Perlmutter system at NERSC, LBNL. The Perlmutter should be upgraded in phase
2 and is anticipated to give significantly upgraded performance. With current GPU’s a ratio of 200Gbit/s
interconnect per 4TF/s seems a sweet spot.

intranode communication is supported using direct vendor provided GPU-GPU copy functionality
and so is not dependent on an efficient MPI implementation.

On the Nvidia platforms the software has been profiled and demonstrated to saturate available
memory bandwidth in all kernels involved in the DWF Dirac operator and around 40% of floating
pipeline usage on the node local “Wilson” matrix. The code is therefore provable optimal. Further
excellent scaling is seen both within a node and on the Edinburgh and Juelich systems across
multiple nodes with near perfect overlap of communication and computation.
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Figure 4

We show the GPU-GPU interconnect performance of four 200Gbit/s Mellanox infiniband cards on
Tursa. The peak bidirectional bandwidth is 4 x 2 x 200 Gbit/s (and so 200 GB/s). Over 90% of this
speed is delivered using MPI to access GPU Direct RDMA bettween GPUs. NVlink performance
interior to the node is excellent.
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Figure 5: We show the CUDA Nsight-sys profile of our code running on node zero of a 16 node job
on Tursa. The communication and computation are perfectly overlapped and this system is well balanced
for QCD. After continued optimisation of our code 16 multi-GPU nodes using 64 GPU’s deliver that same
performance as 1024 (substantially cheaper) nodes of the previous system it replaces. All kernels in the
sequence (including face assembly) have been profiled and verified to obtain around 80% of the peak memory

bandwidth.

Figure 6: We show the CUDA Nsight-compute profile of the main kernel DWF code. All kernels in the
sequence (including face assembly) have been profiled and verified to obtain around 80% of the peak memory
bandwidth. This kernel is typical, but as it is floating point rich it is also seen to obtain 39% utilisation
of the floating point pipeline and a high fraction of the available cache bandwidth. Communication and

computation are being efficiently overlapped while this kernel runs.
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