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The order of the chiral phase transition of lattice QCD with unimproved staggered fermions is
known to depend on the number of quark flavours, their masses and the lattice spacing. Previous
studies in the literature for 𝑁f ∈ {3, 4} show first-order transitions, which weaken with decreasing
lattice spacing. Here we investigate what happens when lattices are made coarser to establish
contact to the strong coupling region. For 𝑁f ∈ {4, 8} we find a drastic weakening of the transition
when going from 𝑁𝜏 = 4 to 𝑁𝜏 = 2, which is consistent with a second-order chiral transition
reported in the literature for 𝑁f = 4 in the strong coupling limit. This implies a non-monotonic
behaviour of the critical quark or pseudo-scalar meson mass, which separates first-order transitions
from crossover behaviour, as a function of lattice spacing.
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Figure 1: Critical 𝑍2 mass as a function of
the number of degenerate staggered quark
flavours for different lattice spacings at zero
density, in the weak coupling regime [3].
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Figure 2: Order of the chiral phase transition using
𝑁f = 4 at zero density in strong coupling regime, using
staggered fermions [8].

1. Introduction

The order of the chiral phase transition in the chiral limit is still a challenging topic of lattice
QCD. Simulations at zero mass on the lattice are prohibited by the influence of zero modes
of the Dirac operator, and extrapolations to the chiral limit are necessary in order to draw any
conclusions. In the weak coupling regime, the chiral phase transition at zero chemical potential has
been investigated for different numbers of quark flavours and masses, using unimproved staggered
fermions and lattice temporal extents 𝑁𝜏 [1–3]. In figure 1, the second-order critical boundary line
separating the parameter region with first-order transitions (below) from crossover (above) is shown
for 𝑁𝜏 ∈ {4, 6}. For such studies, we consider a statistical system at zero density described by the
partition function

𝑍 (𝛽, 𝑎𝑚, 𝑁f, 𝑁𝜏) =
∫

D𝑈 (det 𝐷 [𝑈])𝑁f𝑒−𝑆𝑔 [𝑈 ] , (1)

in which 𝑁f can be generalised to continuous values. This is implemented straightforwardly for
rooted staggered fermions. For sufficiently small masses, 𝑁f can then be used as extrapolation
parameter with known scaling behaviour, since it features a tricritical point in the lattice chiral limit,
where the chiral phase transition changes from first order triple to second order [1]. The difference
between the data at different 𝑁𝜏 values shows a strong cutoff dependence, which increaes with 𝑁f.
The values of the gauge coupling parameter along the critical lines are in the range 𝛽 ∈ [4.7, 5.2],
which means that the data belong to the intermediate to weak coupling regime.

On the other hand, the strong coupling limit for 𝑁f = 4 has been thoroughly studied over the
last forty years, using both the mean field approximation [4–7] and Monte Carlo simulations [8–11].
The latter employ a reformulation of the partition function in terms of monomers and polymers
[9, 10], which permits a direct simulation of the massless limit. Furthermore, the leading O(𝛽)
gauge corrections have been included in [12]. In figure 2 we see that, moving towards the strong
coupling regime, the phase transition at 𝜇 = 0 is found to be of second order. Since the lattice
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Figure 3: Example of reweighted skewness and kurtosis for ⟨�̄�𝜓⟩ as a function of the gauge coupling 𝛽 for
𝑁f = 8, 𝑎𝑚 = 0.0015 and 𝑁𝜎 = 16. The red points correspond to the simulated 𝛽 values while the rest has
been produced using the Ferrenberg-Swendsen reweighting.

Crossover 1𝑠𝑡 order 3𝐷 Ising
𝐵4 3 1 1.604
𝜈 − 1/3 0.6301(4)

Table 1: Universal infinite volume values of the kurtosis 𝐵4 and of the relevant critical exponent.

temporal extent 𝑁𝜏 is related to 𝛽 through the lattice spacing 𝑎,

𝑁𝜏 = (𝑎(𝛽)𝑇)−1, 𝛽 = 6/(𝑔(𝑎))2, (2)

a smaller 𝑁𝜏 corresponds to a larger 𝑎 and smaller 𝛽 at fixed temperature 𝑇 . Therefore, comparing
figure 2 to results for 𝑁f = 4 in figure 1, we expect the size of the first-order region to shrink again
when using a coarser lattice, i.e. when moving towards stronger couplings.

In this work we are trying to establish the shape of the 𝑍2 boundary line between the weak and
the strong coupling regimes for 𝑁f ∈ {4, 8}. To this end, we perform simulations on 𝑁𝜏 = 2 lattices
at different bare quark masses to identify the critical 𝑎𝑚𝑍2 mass.

2. Analysis

In order to locate the phase transition and identify its nature, we use the chiral condensate
⟨�̄�𝜓⟩, which becomes a true order parameter in the limit of massless quarks, whereas it is always
non-zero for non-vanishing quark masses. Nevertheless, the sampled distribution of ⟨�̄�𝜓⟩ contains
all information to characterise the phase transition. We analyse the standardised moments of
O = ⟨�̄�𝜓⟩, which for fixed 𝑁f and 𝑁𝜏 read

𝐵𝑛 (𝛽, 𝑎𝑚) = ⟨(O − ⟨O⟩)𝑛⟩〈
(O − ⟨O⟩)2〉𝑛/2 . (3)

The (pseudo-)critical coupling 𝛽𝑐, corresponding to the location of the phase boundary, is
defined by 𝐵3(𝛽𝑐, 𝑎𝑚) = 0, where 𝐵3(𝛽, 𝑎𝑚) is the skewness, which quantifies the asymmetry of
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Figure 4: Fit of minimum of the kurtosis as a function of the quark masses for 𝑁f = 4.

the distribution of the order parameter. The order of the phase transition can be investigated by
means of the kurtosis 𝐵4(𝛽, 𝑎𝑚), which has a minimum at the phase boundary 𝛽𝑐. Its infinite
volume values along the phase boundary, 𝐵4(𝛽𝑐, 𝑎𝑚), distinguish the different cases and are listed
in table 1. When finite volumes are simulated, the kurtosis varies smoothly between the tabulated
values as the quark mass is changed. For large enough volumes 𝑁3

𝜎 , and in a neighbourhood of a
critical point, the kurtosis evaluated at 𝛽𝑐 can be expanded in the scaling variable (𝑎𝑚−𝑎𝑚𝑍2)𝑁

1/𝜈
𝜎 ,

with a critical exponent given in table 1,

𝐵4(𝛽𝑐, 𝑎𝑚, 𝑁𝜎) ≈ 𝐵4(𝛽𝑐, 𝑎𝑚,∞) + 𝑐(𝑎𝑚 − 𝑎𝑚𝑍2)𝑁
1/𝜈
𝜎 . (4)

The critical mass is therefore defined as the intersection point of the kurtosis evaluated on different
volumes.

In principle 𝐵3 and 𝐵4 are continuous functions of the gauge coupling parameter, but simu-
lations are carried out for two or three 𝛽-values per mass of interest. The Ferrenberg-Swendsen
reweighting is then employed to improve the resolution in the determination of 𝛽𝑐, as shown in
figure 3. In our simulations, we fix the lattice temporal extent to the coarsest possible choice
𝑁𝜏 = 2. All simulations are performed by means of the RHMC algorithm using different numbers
of pseudofermions [13] , which allows the algorithm to be used also if 𝑁f(mod4) = 0, and it is
implemented in the publicly available simulation program CL2QCD based on OpenCL, in its latest
version 1.1 [14, 15]. For handling effectively the needed simulations the BaHaMAS software [16]
is employed.

3. Results

First preliminary results for 𝑁f = 4 are shown in figure 4, using 𝑁𝜎 ∈ {8, 12, 16} and simulating
four different mass values. All data points in figure 4 have 𝐵4 > 2, and moreover, according to the
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Figure 5: Fit of minimum of the kurtosis as a function of the quark masses for 𝑁f = 8.

fit attempt to equation (4), 𝐵4 grows with increasing volume. Comparing with table 1 we see that
those values are far from a 3𝐷 Ising critical point, and on the crossover side of it. If we nevertheless
attempt linear fits according to equation (4), no crossing occurs for 𝑎𝑚 > 0. Thus the critical mass
for 𝑁f = 4 on 𝑁𝜏 = 2 is too small to be detected in our simulations,

𝑎𝑚𝑍2 < 0.001 . (5)

Unfortunately, simulations with 𝑎𝑚 < 0.001 are prohibitively difficult. The sampled chiral conden-
sate distribution features finite size effects when simulating too small masses for a fixed volume.
Consequently, the shape of the skewness as a function of 𝛽 undergoes distortions, affecting the
scaling analysis. A detailed overview of this problem has been presented in section IV of [1]. On
the other hand, larger volumes increase the simulation time beyond the capacities of our current
resources.

Nevertheless, if the absence of a critical 𝑎𝑚𝑍2 persists once more simulation points and statistics
are added, it is consistent with the transition in the lattice chiral limit being of second order. The
gauge coupling values along the phase boundary are 𝛽 ≥ 3.45, which is still far from the strong
coupling limit. This indicates that the second-order transition at 𝜇 = 0 in figure 2 extends to these
intermediate coupling values.

The idea then is to move to higher values of 𝑁f. Figure 1 shows that the transition generally
strengthens with 𝑁f, so we expect to find a critical point for a certain value of 𝑁f > 4. In order
to increase the chances to succeed, we performed new simulations for 𝑁f = 8, with results as
shown in figure 5. We have used larger volumes 𝑁𝜎 ∈ {12, 16, 20} in order to minimise the
influence from finite size effects for small masses. Nevertheless, the data points corresponding to
𝑎𝑚 ∈ {0.001, 0.0015} and 𝑁𝜎 = 12, although presented in the plot, are not included in the fit since
their larger values are again strongly affected by finite size effects [1].

As expected, an important difference to the fit in figure 4 is that we are now able to locate a
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Figure 6: Sketch of the (𝑚/𝑇, 𝑁−1
𝜏 )-Columbia Plot for 𝑁f = 4 (left) and 𝑁f = 8 (right). Red dots represent

tricritical points, where the first-order triple 𝑎𝑚 = 0 transition line meets the second-order ones. The shaded
grey areas remain unknown. The rightmost dashed line represents 𝑁𝜏 = 2 simulated in this work, the other
two correspond to 𝑁𝜏 ∈ {4, 6} from [2, 3]. The 𝑁𝜏 = 6 line for 𝑁f = 8 does not represent a numerical result
but is kept there to give an idea of how much the first-order region differs from the one of 𝑁f = 4.

critical mass
𝑎𝑚𝑍2 = 0.00148(10),

where the three lines in the fit do cross. The values of 𝛽𝑐 ∈ [2.06, 2.105] are closer to the strong
coupling regime than in the 𝑁f = 4 case. Since some of the data were not included in the fit, we
are performing additional simulations for 𝑎𝑚 ∈ {0.001, 0.0015} using the larger volume 𝑁𝜎 = 24,
but so far the statistics is not enough for a reliable analysis. Low statistics also explains the larger
error bars for the larger volumes in figure 5, as well as for the large uncertainty on the first 𝑎𝑚𝑍2

estimate.

4. Conclusions

In figure 6 we present two qualitative sketches of the critical 𝑍2 line for 𝑁f = 4 and 𝑁f = 8
based on our preliminary results. According to [3], both 𝑁f ∈ {4, 8} theories most likely display a
tricritical point 𝑁 tric

𝜏 (𝑁f) on the horizontal axis for large 𝑁𝜏 , which is closer to the origin, the larger
𝑁f. The trend of the boundary lines between 𝑁𝜏 = 6 and 𝑁𝜏 = 4 is based on figure 1 and also in
agreement with [17]. Our preliminary data show that towards larger 𝑁−1

𝜏 , i.e. stronger couplings,
the critical lines for both cases is coming down again, and for 𝑁f = 4 it must terminate in another
tricritical point, which is consistent with 4 < 𝑁 tric

𝜏 < 2. Since no 𝑎𝑚𝑍2 was found, the location
of the tricritical point remains open. This is indicated by the shaded area in the sketch. On the
other hand, moving to 𝑁f = 8 it was possible to locate a candidate critical mass, represented by the
intersection of the rightmost dashed line and the boundary line in figure 6. In this case, the fate of
the transition in the strong coupling limit is not known.
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Altogether, we find that the order of the chiral phase transition changes non-monotonically as a
function of lattice spacing for both 𝑁f ∈ {4, 8} unimproved staggered quarks, which highlights the
requirement of the correct ordering of taking 1) the continuum limit and 2) the chiral limit before
any conclusions for continuum physics can be drawn.
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