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1. Context

The Southern Wide-field Gamma-ray Observatory1 will be a cosmic particle observatory to
be constructed at a high-elevation site (> 4.4 km above sea-level) in the Andes mountain range.
Currently this project is in a Research and Development (R&D) phase, which is expected to be
concluded in 2023 with a final design for the observatory. To deal with the various aspects of the
R&D phase the collaboration generated five working groups with different tasks:

• science – evaluation and development of the science cases,

• analysis and simulation – estimation of the performance of different design options,

• detector – assessment of the hardware design,

• site – characterisation of the several possible site locations,

• outreach and communication – preparation of internal and external communication materials.

These working groups organise themselves with regular, typically bi-weekly, calls and the com-
munication between working groups is guaranteed by monthly calls between the working group
coordinators and two collaboration meetings per year. In this contribution the strategy to optimise
the detector design of the analysis and simulation working group is presented.

2. Simulation Chain

The objective is to evaluate the performance of several design choices in order to optimise the
final design. To get a fair comparison between the different component and layout options, all design
options will be performed in a single framework. It was decided to adapt and expand the simulation
and reconstruction framework of the HAWC collaboration, which has the advantage that a wealth
of algorithms are already available, the framework has been thoroughly tested, and comparison
with the performance of a currently operational observatory is possible. The full simulation chain
consists of four individual sequential steps, each of them producing a data product.

2.1 Air shower simulation

The first step is the generation of a library of air shower simulations for whichwe use CORSIKA
[1] (v7.74, configured with UrQMD [2] for the low-energy hadronic interactions and QGSJetII-04
[3] for the high-energy hadronic interactions). The library consists of large sets of gamma-ray and
proton showers, these are simulated on a �−2 spectrum from 30GeV to 1 PeV (10 PeV for protons),
and their directions are distributed isotropically up to a zenith angle of 65◦. The geomagnetic field
has been set to the current value of the magnetic field at lat/lon 18◦S/70◦W which is roughly in the
middle of the range of locations that are considered for the observatory. For each air shower, the
particles are saved at 8 observation levels between 4100m and 5200m, which spans the range of
elevations of potential site candidates (see contribution [4]). With the same setup, smaller sets of
primary helium, nitrogen, and iron nuclei have been simulated to evaluate science cases related to
cosmic-ray composition.

1www.swgo.org
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Figure 1: A nearly horizontal muon (green line) passing through the different tank shapes available in the
detector simulation (side and top view). The red lines show a small fraction of the Cherenkov photon tracks.
The smallest and largest cylindrical tanks have poorly reflective linings while the other tanks have highly
reflective linings.

2.2 Detector response

The interactions of air shower particles with the detector are simulated using a model imple-
mented in GEANT4[5]. The information of each Cherenkov photon generated by the relativistic
charged particles in the water is collected at the impact point on the photo sensor. This part of the
simulation chain is the most computing intensive, therefore several strategies are developed to make
calculation of the detector response more efficient.

Firstly, by taking into account the wavelength dependent photon detection efficiency at the
moment that photons are generated, we reduce the number of photons that need to be tracked and
therefore reduce the calculation time. Secondly, for each photon arriving at the photo sensor, we
store its impact point, direction, energy and the number of reflections it underwent. This information
can be used to simulate several component options at once. By using the output of simulations
with large high-efficiency photo sensors, smaller and/or less efficient sensors can be simulated by
rejecting photons based on the stored information at a later stage. Similarly, by using a reflective
lining around the water-volume in the initial simulation, non reflective linings can be simulated by
rejecting photons that have non-zero values for the reflection counter.

The detector simulation is configurable by text-based steering cards. The shape, dimensions,
materials of the detector unit can be chosen. Also the type of photo sensors and their number and
locations within a detection unit can be set. In addition, the array layout is set up with an external
steering card.

As an illustration of the flexibility of the detector simulations, we show in Figure 1 a muon
passing through the different tank shape options we have currently available (see also [6]).
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2.3 Event Reconstruction

The event reconstruction chain consists of several parts. The list of photons that are expected to
generate a signal in a photo sensor are processed further. The electronics and the data acquisition are
modeled and applied. This includes the superposition of noise, the response and processing of the
electronics and the application of trigger conditions. For each electronics channel, signal amplitude
and time are derived and they are sequentially used in the event reconstruction and classification.
After event geometry and energy has been reconstructed, parameters are derived to estimate the
type of the primary cosmic particle, mainly focusing on separating the electromagnetic cascades
produced by primary gamma-rays (and electrons) from hardonic cascades initiated by cosmic-ray
nuclei. After this step, event-lists are written out. The level of detail written to file per event can be
set to single valued parameters per event or be extended to include the time and amplitude estimates
of each channel. Currently, the event reconstruction chain is being developed and optimised.

2.4 Instrument Response Functions

The event-list parameters from the reconstruction chain, together with the information about
how the air showers were distributed are used to build the Instrument Response Functions. The
initial effort that started this work is focusing on making this part of the framework compatible
with the standards in the field [7, 8]. This should allow for straightforward testing of science cases,
where the end user can provide scripts that are similar to the ones being used for the Cherenkov
Telescope Array or Fermi-LAT studies.

3. Strategy

3.1 A starting point

To get an initial starting point in the optimisation procedure for SWGO, we defined a reference
design. The design parameters are chosen such that it should be a reasonably performing detector,
but no serious optimisation steps have been taken yet. For all the individual components of this
reference design a best estimate for the costs is currently being derived such that we can get a total
cost estimate for a full observatory. The reference design consists of a dense inner array with a fill
factor of roughly 80% and radius of 160m. This array is surrounded by a less dense array with an
outer radius of 300m and a fill factor of about 5% (see Figure 2). The units in the inner and outer
array are identical and the total number of detector units is 6600. The individual units correspond
to a two compartment cylindrical tank with a diametre of 3.8m (see Figure 1 third tank from
the left). Each compartment contains a R5912-100 8” Photon Multiplier Tube from Hamamastsu
and the height of the lower compartment is 0.5m, while the height of the top compartment is
2.5m. All inner surfaces are reflective (using white Tyvek), except the floor and ceiling in the
upper compartment (black Polyproplene). Figure 2 shows the array layout and the response to two
gamma-rays of different energies. This reference design will be used to develop and validate the
end-to-end simulation framework and produce an initial set of IRFs which will be used to evaluate
the science benchmarks [9].
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Figure 2: Reference array configuration with the response to two simulated gamma rays. Marker sizes give
an indication of the signal amplitude and the colour coding shows the timing gradient (time increasing from
blue to red).

3.2 Optimising

In the next step, the total cost of the reference design will be used as a constraint on other
designs. By generating a cost model database for individual components, other detector design
and layout options will be studied with the total price fixed. Each layout will be confronted with
the science benchmarks in order to get an overview of the impact of design choices on the science
potential of the observatory. The cost constraint in this approach is used to guide the design choices,
the final design will depend on the total budget available for the construction and operation of the
observatory. The phase space that we intend to explore in this way is indicated on the differential-
point-source-sensitivity plot in Figure 3. As a conservative upper limit in the performance we
picked the straw man design that was used in an earlier science case study[13]. This curve is
obtained by scaling from the 2017 published HAWC performance to an array layout that is close to
the reference design (Figure 2). We scaled the array layout, but not the intrinsic performance of the
detector units with respect to HAWC detector units. The shaded region in Figure 3 is to indicate
where different design options might enhance the sensitivity over the performance of the straw man
design. We identified three energy regimes where improvements might be achieved with particular
design choices.

Several design options under investigation aim to improve the low-energy performance with
respect to the HAWC and LHAASO designs. Among these, are the lowering of the individual unit
threshold and the possibility for sites at a higher elevation. The region in Figure 3 is indicative
of a boost in performance, but the actual performance should become more clear when the design
options are confronted with the specific science benchmark cases where low-energy performance
is crucial, like the detection possibilities of gamma-ray bursts.

In the mid-energy range, preliminary studies indicate that significant improvements can be
made on both the angular resolution and the background rejection [14–16]. Especially under
investigations are compact units with dedicated muon tagging capabilities. To indicate a scale that
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Figure 3: Differential point source sensitivity of several experiments[10–13] and the phase-space that will
be explored in the design studies for SWGO (see text for more detail).

might be achievable, we applied scaling factors of 0.3 to the point spread function (PSF) and 10
to the background rejection efficiency of the straw man design as a lower-limit of the phase-space
exploration.

The recent results from LHAASO show that a square kilometre array with a 10−5 background
efficiency is feasible and that there are quite a few sources in the 0.1 - 1 PeV energy range [17].
This motivates us to investigate the options for enhancing the high-energy performance of SWGO
by implementing a large (low density) outer array with good background rejection efficiency.

The outcome of the presented optimisation strategywill be used in the final design optimisation,
which takes into account the constraints and exact properties of the proposed site of the observatory,
as well as the decisions made on detector hardware implementation [18, 19].
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