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The gamma-ray source 3HWC J1928+178, discovered by HAWC, is coincident with the 82 kyr
pulsar PSR J1928+1746, located 4 kpc away. It has not been reported by any Imaging atmospheric
Cherenkov Telescope (IACT), until the recent detection of emission from this region by HESS,
using an analysis adapted to extended sources. No counterpart in GeV gamma-rays from Fermi-
LAT data or in X-ray has been reported so far. In this contribution, I give the multiwavelength
context of the region surrounding 3HWCJ1928+178 and present amulti-componentmodel derived
using the Multi-Mission Maximum Likelihood framework (3ML). I explore the possibility to
model the gamma-ray emission of 3HWC J1928+178 by an extended source with continuous
diffuse emission. Together with the age of the pulsar and its extended nature, it may indicate a
transition from a pulsar wind nebulae to a halo, where the electrons have started to cool and diffuse
away from the source.
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1. Introduction

1.1 Astrophysical context

3HWC J1928+178 (ℓ = 52.93°, 1 = 0.2°) is a gamma-ray source discovered by HAWC
and reported in the 3HWC catalogue [1] at the significance level of ∼ 15f. No Imaging At-
mospheric Cherenkov Telescope (IACT) has detected it before the confirmation by the H.E.S.S.
collaboration[2], using an analysis method adapted to extended sources. The origin of the ob-
served very high energy gamma-ray emission is still unclear. It may be associated with the pulsar
PSR J1928+1746, discovered at radiowavelength [3], although neither the pulsar nor the pulsar wind
nebulae (PWN) has been detected in the X-ray energy range. In the vicinity of 3HWC J1928+178
is another HAWC source, 3HWC J1930+188 (ℓ = 54.03°, 1 = 0.32°), also detected by H.E.S.S. [4]
and VERITAS [5], associated with the PWN in the supernova remnant SNR G54.1+0.3. It hosts
the pulsar PSR 1930+1852. Finally, another energetic pulsar is located nearby, PSR J1932+1916,
associated with the Fermi source 3FGL J1932.2+1916. The characteristics of the three pulsars are
gathered in Table 1.

Table 1: Characteristics of the pulsars located in the vicinity of 3HWC J1928+178 taken from the ATNF
catalogue [6].

PSR J1928+1746 PSR J1930+1852 PSR J1932+1916
celestial coordinates (ra °, dec °) (292.18,17.77) (292.62,18.87) (293.08,19.28)
galactic coordinates (l °, b °) (52.93,0.11) (54.1,0.26) (54.67,0.09)

distance (kpc) 4.3 6.2 -
age (kyr) 82.6 2.9 35.4
period (s) 0.069 0.14 0.21

spin down power (erg s−1) 1.6 × 1036 1.2 × 1037 4.1 × 1035

1.2 The HAWC observatory and HAWC Data

The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is located at a latitude
of 19°N in Mexico, and at 4100 m in altitude. HAWC is composed of 300 water tanks instrumented
with four photomultiplier tubes (PMT). When the secondary particles of an atmospheric air shower
passes through HAWC, they produce Cherenkov light in the water tanks and each PMT records the
time and amplitude of the signal. Combining the information of all the PMTs, we can build the
footprint of the shower on the detector and reconstruct the parameters of the air shower. Each event
is assigned to one of the 9 analysis bin depending on the fraction of the water tanks that has been
hit. Bin definitions are given in [7]. For this analysis, 1523 days of HAWC data are used and events
falling in the analysis bins 4 to 9 are selected. It corresponds to events triggering more than 25% of
the array, which gives an energy threshold of approximately 1 TeV. For this specific bin selection,
the sources 3HWC J1928+178 is refered to as HAWC J1928+178 in [2]. The corresponding PSF of
the instrument is ∼0.4° for bin 4 and decreases to less than 0.2° for bin 9. More information about
the detector, the event reconstruction and the data analysis can be found in [8] and [7].
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2. Modeling the region around 3HWC J1928+178

Amulti-component fit based on a maximum likelihood approach is performed using the Multi-
Mission Maximum Likelihood framework (3ML) [9] and the HAWC HAL1 plugin. A model is
defined for a 3.5° radius region around 3HWC J1928+178, convolved with the instrument response
and compared to the corresponding experimental data. Two models are considered, described in
the following paragraphs.

2.1 The four components model

Following an iterative procedure, a first model is defined composed of 2 components: a
point-like component and an extended symmetric Gaussian component at the location of the two
HAWC sources 3HWC J1930+188 and 3HWC 1928+178 respectively. This choice is motivated
by the fact that 3HWC J1930+188 was detected as a point-like source by HAWC, H.E.S.S. [4]
and VERITAS [5], and by previous studies of 3HWC J1928+178 that showed that it is likely
extended [2] [10]. A simple power law dN/dE = F0(E/E0)Γ is assumed as energy spectrum for all
components. The fit is performed with the position, size of the extended source, flux normalisation
F0 at E0 = 10 TeV and spectral index Γ as free parameters. For each model, a test statistic (TS)
is computed that compares the likelihood that the region is represented by the model against the
hypothesis that there is background fluctuations only: TS = 2 ln(L(model)/L(background)).
According to Wilks’ theorem, the quantity TS follows a j2 distribution of N degrees of freedom,
with N the difference in number of free parameters between the model and the background [11]. If
an excess is found in the residual maps, a new component is added at the location of the excess and
the fit is performed again with the additional component. The procedure stops when the addition of a
new component does not improve the fit bymore thanΔTS = 25. The best model is found to bemade
of two point-like sources close to the location of the pulsars PSR J1930+1852 and PSR J1932+1916,
and two extended sources represented by symmetric Gaussians. The first one is found to have a
size f = 0.18° (39% containment) and is located at the position of 3HWC J1928+178. The second
one is very extended with a size f = 1.43° and seems to cover the whole region, likely trying to
account for some large scale gamma-ray emission, maybe diffuse emission from the galactic plane.
The output parameters can be found in Table 2 and the model can be visualised on the top right
panel of Figure 1.

2.2 The diffusion emission model

Alternatively, a diffusion model is considered for 3HWC J1928+178, assuming a continuous
injection of electrons and positrons at the location of the remaining excess for 3HWC J1928+178 af-
ter the first fit. Similar to the Geminga analysis [12], it is motivated by the fact that PSR J1928+1746
is a rather old pulsar, that we don’t see any X-ray counterpart and that the W-ray emission seems
extended. Indeed, the four components model shows that 3HWC J1928+178 seems to be described
by a superposition of a small Gaussian on top of a very wide one, which are both incorporated in this
diffuse component for 3HWC J1928+178. This model is thus composed of three components only:
two point-like and one extended component with diffuse emission. As described in [12], the W-ray

1https://github.com/threeML/hawc_hal
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flux 53 for 3HWC J1928+178, as a function of the distance from the source 3, is approximately
equal to:

53 =
1.22

c3/2A3 (3 + 0.06A3)
exp
−32

A2
3

(1)

where A3 is the diffusion radius that is a free parameter fitted together with the position of the three
components and their spectral parameter. The diffusion radius is found to be 2.68°. All the output
parameters are gathered in Table 2 and the model can be visualised on the bottom right panel of
Figure 1.
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Figure 1: Left: HAWC significance map with the location of the HAWC sources and the location of the
pulsars. The white circle is the region of interest of 3.5°radius. Right: Significance map of the 4 components
model at the top and the diffusion model at the bottom, with the position and size of each fitted components.
Each map is 3.5°in radius

3. Comparison between the 2 models

The diffusion model is slightly worse by ΔTS = 8 than the model with 4 components (2 point-
like and 2 extended sources) but it has less degrees of freedom since it has only 3 components. To
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Table 2: Output values from the fit for the components of the two different models representing
3HWC J1928+178.

4 components model diffusion model
hypothesis Gaussian 1 Gaussian 2 continuous injection
(ra °, dec °) (292.15±0.03, 17.90±0.04) (292.05±0.15, 18.10±0.17) (292.10±0.06, 17.98± 0.02)

size (f or A3) (°) 0.18 ± 0.03 1.43 ± 0.16 2.68 ± 0.27

index -2.09 ± 0.15 -2.60 ± 0.08 -2.58 ± 0.05

flux10 TeV (×10−15
4.2 +1.5

-1.1 40 +5
-4 47 +5

-5TeV−1 cm−2 s−1)

account for the difference in number of degrees of freedom we can look at the Bayesian information
criterion number (BIC) for the two non-nested models used here [13], given by this formula :
BIC = −2 ln(L) + :ln(=) where : is the number of free parameters and = is the number of
healpix pixels in the ROI. It seems that the diffusion model is largely preferred with a difference of
ΔBIC = 45. Figure 2 shows the radial profiles centered on 3HWC J1928+178 of the HAWC data,
and for the two models. The profile of the Crab nebula is plotted as a reference for the HAWC PSF,
showing that the emission is indeed extended. The profiles of both models follow closely the data.

Preliminary

Figure 2: Radial profile centered on J1928 in step of 0.2°, for the HAWC data (blue) with its standard
deviation (grey band), the diffuse model (red) and the 4 components model (green). The profile of the models
is plotted for the region of interest of 2° only. The profile of the crab nebula is also plotted (black) as a
reference for the HAWC PSF.

The spectral energy distribution is plotted in Figure 3 for the component representing the source
3HWC J1928+178 for the two models. It is compared with the spectrum from the HAWC automatic
source search for the same set of data [2]. The flux point from LHAASO [14] seems to be more
compatible with the 4 components model, or imply a cut-off in the power low spectrum from the
diffusion model.
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Preliminary

Figure 3: Spectral energy distribution of 3HWC J1928+178 for the twomodels presented in this contribution,
for the energy range 3.5 - 51 TeV, corresponding to the median energies of bin 4 and 9. The spectrum from
the HAWC catalogue search for the same analysis bins [2] and the flux point from LHAASO are also plotted
for comparison [14]. The shaded area correspond to the 1f statistical uncertainties.

4. Discussion and conclusion

The 4 components model and the diffusion model are very similar in the sense that they are in
agreement with the hypotheses that 3HWC J1928+178 is extended, and that the presence of a very
large scale component is needed, either maybe due the galactic diffuse emission in one case, or to
the diffusion of e± in the second case. The diffusion model, with 1 component less and a lower
BIC, seemed favoured. It may indicate that 3HWC J1928+178 is in a transition phase to a TeV
gamma-ray halo: the pulsar being rather old, the TeV gamma-ray emission being extended, and
the fact that no PWN has been detected in X-ray are favouring this hypothesis. However, the fitted
diffusion radius A3 is found to be 2.68°, i.e ∼ 400 pc in diameter, since PSR J1928+1746 is located
4.3 kpc away. It is huge compared to Geminga which has a diffusion radius of 5.5° but is only 250
pc away from us, giving a size of 23 pc in diameter. This may disfavour this model. Moreover,
the spectrum for 3HWC J1928+178 from the 4 components model is in better agreement with the
measurement from LHAASO. A deeper study at the highest energy, using the energy estimators
developed by the HAWC collaboration [15] instead of the analysis bins would help to clarify the
presence of a cut-off.
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