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Abstract:
Identification of proton and gamma plays an essential role in ultra-high energy gamma-ray astron-
omy with LHAASO-KM2A. In this work, two neural networks (deep neural networks (DNN) and
graph neural networks (GNN)) are applied to distinguish proton and gamma in the LHAASO-
KM2A simulation data. The receiver operating characteristic (ROC) curves are used to evaluate
the quality of the model. Both KM2A-DNN and KM2A-GNN models give higher Area Under
Curve (AUC) scores than the traditional baseline model.
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Figure 1: Layout of the LHAASO experiment. The insets show the details of one pond of the WCDA, and
the EDs (red points) and MDs (blue points) of the KM2A. The WFCTA located at the edge of the WCDA is
also shown.

1. Introduction

The Large High Altitude Air Shower Observatory (LHAASO) is a multi-component ground
detector array. It is located at a high altitude (4410 m a.s.l.) in Daocheng, Sichuan Province,
China. LHAASO consists of a kilometer array with an area of 1.3𝑘𝑚2 (KM2A), 78,000𝑚2 Water
Cherenkov detector array (WCDA) and 18 Wide Field air Cherenkov Telescopes array (WFCTA).
The LHAASO-KM2A occupies the major area and is composed of two sub-arrays, 5195 electro-
magnetic particle detectors (ED) and 1188 underground water Cherenkov tanks for muon detectors
(MD). In order to discriminate showers with the core located within the central area from the
outside ones, the ED detectors are divided into two parts, the central part with 4901 detectors and
an out-skirt ring with 294 detectors .Fig 1 shows the layout of these datectors.

The convolutional neural networks (CNN) model of deep learning was applied to discriminate
proton and gamma in the LHAASO in the master thesis of Xiulin Chen who from Institute of
High Energy Physics, Chinese Academy of Sciences, in June 2020. The graph neural networks
(GNN) model of deep learning was adopted here to improve the gamma discrimination power of
the LHAASO-KM2A experiment[1].

Previous methods of cosmic ray compositions identification are based on multivariate analysis.
The disadvantage of this method is that it requires manual selection of features, and relies on
experiences of those involved. This method may also miss some relevant information. The deep
learning method on the other hand, can handle a large number of original information.

DNN model refers to fully connected neuronal structures that do not contain convolution units
or temporal associations. Compared with the traditional neural network model structure, the model
increases the level and depth of the analyses, and is more effective in recovering origin information.
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Figure 2: Left: The original particle density of detector units in KM2A. Right: The particle density map
after filtering out noise hits.

But the training model needs more computing resources, and may fall into local optimal solution.
GNN is a connectionist model for learning graphs that contain a large number of connections.

As information propagates between nodes of the graph, GNN can capture graph independence.
Unlike a standard neural network, GNN maintains a state that represents information from an
artificially specified depth. The data processed by a graph neural network is a graph, the goal of
GNN is to learn the embedding of each node’s neighbors, which is a vector and can be used to
produce output, such as the node’s tag.

This paper is organized as follows. First, we introduce the data sets in this work in Section II.
Then, we review the baseline method in Section III.We give an introduction of the two deep learning
models in Section IV. We perform the experiment and evaluate the results in the last Section.

2. Datasets

In this work, the Monte Carlo simulation is used to generate the event data for training. Air
showers are simulated with the CORSIKA package (version7.6400)[2, 3]. The QGSJETII models
for high-energy and GHEISHAmodels for low-energy hadronic interactions are used. And then the
KM2A detector simulation is performed based on framework of the Geant4 package (v4.10.00)[4–
6] for KM2A half an array. A data sample with ∼ 2.0 × 108 proton shower and ∼ 2.0 × 108
gamma-ray shower events are simulated. Both the gamma-ray and proton events are sampled in
the energy range from 1012 to 1016eV following a power-law function with a spectral index of
-2.0. The zenith angle is distributed from 0◦ to 70◦. The sample area is a circular region with a
sufficiently large radius of 1000 m. To make sure the simulation data is available, the comparison
between MC simulation and experimental is done, details is refer to the literature[7]. Filter out the
noise is done first, in order to get high quality data. Core reconstruction, direction reconstruction,
energy reconstruction are finished along with this work, details are described in another paper[7].
A high-energy gamma-ray-like shower detected by KM2A from the simulation data is shown as
Fig 2. Events selection is done according to below list: (1) The shower core is must located in the

3



P
o
S
(
I
C
R
C
2
0
2
1
)
7
4
1

Identification of proton and gamma in LHAASO-KM2A simulation data with deep learning algorithms
F. Zhang

Table 1: The number of the proton and gamma for each data sets of KM2A-DNN model

Data set
1012-1013eV 1013-1014eV 1014-1015eV 1015-1016eV

Proton Gamma Proton Gamma Proton Gamma Proton Gamma
Train 60000 20000 300000 100000 50000 30000 6000 6000
Test 116871 17512 953683 79937 157755 68515 15123 10335

Table 2: The number of the proton and gamma for each data sets of KM2A-GNN model

Data set
1012-1013eV 1013-1014eV 1014-1015eV 1015-1016eV

Proton Gamma Proton Gamma Proton Gamma Proton Gamma
Train 688659 183061 572017 431521 122202 92187 14946 11274

Validation 196759 52303 163434 123291 34915 26339 4270 3221
Test 98381 26151 81717 61646 17458 13169 2136 1611

fiducial area enclosed by the cyan lines in figure1 of this paper[7]; (2) The zenith angle is less than
50 degree; (3)The number of particles detected within 40m from shower core is larger than that
within 40-100m; (4)The number of EDs and the number of particles for the reconstruction are both
greater than 10; (5)ED detectors are counted within the distance 100 m from the shower core, and
the active MD detectors are counted within 40-200 m; (6)The shower age is between 0.6 and 2.4.
After the screening, 1996894 proton events and 1025774 gamma events survived.

The partition of KM2A-DNNmodel and KM2A-GNNmodel data sets is shown in Table 1 and
Table 2, respectively.

3. Baseline model

The electron and muon parts in a shower is discriminated by the ED and MD arrays of KM2A
respectively, 𝑁𝜇 and /𝑁𝑒 are adopted to denote the collected photoelectrons of an event recorded
by the activatedMD and ED. There is less muon in the shower induced by gamma than by proton[8].
The ratio of collected signals from theMD and ED is a component sensitive estimator and is adopted
widely on the CR experiments, 𝑁𝜇/𝑁𝑒 was formulated as the physics-base method named baseline
model. The distribution of 𝑁𝜇/𝑁𝑒 with respect to gamma and proton components at different
energy levels is shown in Fig 3.

From the figure, the gamma components possess larger value of 𝑁𝜇/𝑁𝑒 than proton, this
parameter provides good differentiation between proton and gamma at high energies, but at low
energies it’s not as good as at high.

4. DNN and GNN model

In the training process of KM2A-DNNmodel, Learning rate of the model is set to 0.001. Focal
loss of cross entropy loss function based on the binary classification model is used as loss function.
AdamOptimizer is used as the optimizer. Until the model converged, 50 epochs had been runned
in the model. Early Stop is setting up, when the model did not fluctuating within the range of five
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Figure 3: The red and blue squares indicates that the score is located at the score range from one quarter
to three quarters of gamma and proton respectively, the orange line in the box indicates the mean value
correspondingly. All possible value has been plotted using error bars.

Figure 4: Physical significance of ROC curve
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Figure 5: Comparison of ROC curve between baseline model and KM2A-DNN model in different energy
ranges, the AUC score is indicated in the lower right corner.

epochs, the training is stopped in advance, so that the model could achieve the optimal performance.
The same setup is used for the KM2A-GNN model, but this model only ran 20 epochs.

5. Results

ROC curve is used to evaluate the model performance. In order to obtain the physical signif-
icance of ROC curve in this paper, Fig 4 is taken as an example to give a detailed introduction.
In this figure, when accuracy of gamma equal to 0.85, the contamination of proton is 0.27 and
0.17 for baseline model and KM2A-DNN model respectively. The conclusion that KM2A-DNN
model is better than baseline model in discriminating ability can be obtained. Area Under Curve
(AUC) score is a parameter used to quantitatively compare good models with bad ones. The AUC
score of each figure is indicated in the lower right corner. The comparison of ROC curve between
baseline model and KM2A-DNN model and KM2A-GNN model are shown in in Fig 5 and Fig 6,
respectively.

From the two pictures above, all the models have better discriminative ability in high energy
levels than in low energy levels, this is in line with our expectations. But both the KM2A-DNN
model and KM2A-GNN model performed better than baseline model at discrimination of gamma
an proton , at all energy ranges.
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Figure 6: Comparison of ROC curve between baseline model and KM2A-GNN model in different energy
ranges, the AUC score is indicated in the lower right corner.
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