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approach based on Deep Learning for the regression of shower parameters, namely the its core
position and ground energy, using water Cherenkov detectors. We design our method using
simulations. We evaluate the limits of such estimation near the borders of the arrays, including
when the center is outside the detector’s range. We used Bayesian Neural Networks and derived
and quantified systematic errors arising from Deep Learning models and in an EfficientNet model
design. The method could be easily adapted to estimate other parameters.
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1. Introduction

The cosmic rays and gamma rays entering the Earth’s atmosphere can cause Extensive air
showers (EAS) generating Cherenkov light. Many EAS are connected to high energy extragalactic
or interstellar medium sources that present a window to study the high energyUniverse. ImagingAir
Cherenkov Telescopes (IACTs) collect Cherenkov light produced and can reconstruct the energy and
the direction of the primary gamma-ray. These detections have a typical energy resolution of around
20% for TeV gammas and zenith angles of about 20◦. The resolution of MAGIC-II was measured
to be 15% in Ground-based gamma-ray observatories sample the particles (mainly electrons and
photons). From their time and position distributions, it can be determined, with reasonable accuracy,
the shower core position and the direction of the primary gamma-ray. The energy measured by
a detector array with electromagnetic calorimetric capabilities, like Water Cherenkov Detectors
(WCD), is by definition highly correlated with the ground energy ((4<) [1]. In this contribution,
we aim to investigate WCD shower parameters recovery from a novel perspective: using Deep and
Bayesian Deep Learning techniques.

Deep learning algorithms [2] are a class ofNeural Networkmethods that have changed scientists
perspectives on how tomodel data. Neural Networks andDLmodels can approximate a wide variety
of functions in compact R=[2–4]. This is achieved by a training phase that produces data-driven
models. Therefore, Deep learning has been successfully applied to several regression problems
[5–7]. To construe a deep model for regression instead of the standard classification problem,
one may fit the model for a function similar to log-likelihood or a simply Absolute deviation. In
this contribution, we adopt a Bayesian Deep Learning perspective based on the Concrete Dropout
procedure [henfeforth CD; 8]. This method allows us to approximate a two-dimensional probability
of both the predicted parameters, shower’s core coordinates and ground energy, for a given deep
model. In the following sections, we present a short overview of the architecture and the uncertainty
estimation in the Bayesian Deep Learning framework.

The main focus of this contribution is to explore the newly proposed method to achieve an
accurate energy reconstruction of EAS between several hundreds of GeV and a few TeV, which is
the most challenging energy region.

2. Bayesian Deep Neural Networks

InDLpredictions, uncertainty estimation is one of the key aspects to define themodel reliability.
Nevertheless, intuitive error estimation and uncertainty quantification in deep learning is the subject
of active research [9]. For the purposes of this contribution, we consider twomain classes of errors in
many machine learning applications: aleatoric (statistical) and epistemic. Aleatoric uncertainties
represent stochastic effects mainly related to data quality level. Epistemic uncertainties enclose
the unknowns of a given DL model. Due to the nature of data-driven models, contrary to first-
principles modeling, the epistemic errors can change if the training set is updated. Thus, the trained
model might be refined. It is worth noticing that epistemic errors are systematic, though not every
systematic is epistemic. Also, statistical errors are aleatoric, but some aleatoric errors might also
be systematic. The total DL error is known as predictive error. One possible approach to derive
uncertainty from DL models is representing it in a Bayesian scheme [10]. Let a set of DL weights
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matrices be l = {W!
;=1}, with ! layers, the weight’s matrix dimension is  ;. The Probability

Density Function (henceforth PDF) for a prediction H and input G is

?(H |G,X,Y) =
∫

?(H |G, l) ?(l |X,Y) 3l , (1)

where X and Y are the training set’s inputs and truth table, respectively. In the Concrete Dropout
method, we define a dropout probability ? used to drop some weights and thus derive the model’s
error (epistemic) from the ?(H |G,X,Y) distribution [8]. The level of ? is defined by a parametric
function @\ (l) that replaces the unknown weights probability ?(l |X,Y). The Loss function
optimizes the parameters \ are, including ? in the training process defined as

L =

∫
@\ (l) log ?(Y|X, l) 3l − KL(@\ (l) | |?(l)) . (2)

The first term in the loss definition is the cross-entropy. The prior ?(l) used is weights initialization,
and the Kullback-Leibler (KL) divergence can be approximated by a regularization [2]. The PDF of
each prediction is then defined by applying those dropout probabilities in multiple forward passes
of the trained network.

2.1 EfficientNet Models

EfficientNets [11] are a set of CNN based models. They were particularly scaled to optimize
accuracy and computational budget. They are derived from an initial network model similar to
a mobile CNN [12], this model is optimized by a multi-objective neural architecture search [13]
for accuracy and Floating-point Operations Per Second. This output of this first optimization is a
model known as �0. The following models are defined from a set of scaling relations regarding
network width, depth and resolution:

depth: 3 = Uq

width: F = Vq

resolution: A = Wq .

(3)

q is an integer named compound coefficient. The coefficients U, V, and W are defined by a small
grid search optimization in the �0 model with fixed q = 1. From this procedure, one may derive
the �1 to �# neural network architectures using a standard ImageNet dataset for training where
q = # . In this work, we test all models defined by the original EfficientNet paper [11] adapted to
our loss and trained with our simulations. We find the best results regarding training stability and
performance using the �0.

3. Shower Simulations

The shower simulations used as input to our deep learning methods were produced using
CORSIKA [14] (version 7.5600) and the detector response using the Geant4 toolkit (with version
4.10.05.p01)[15]. We assumed an observatory with an altitude of 5200 a.s.l. The stations have a
base diameter of 4 m. We simulated gamma-ray showers up to 1 TeV with 10 deg zenith angle. For
a more detailed description of the simulation parameters used, we refer to [1]. We leave a detailed
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study of other zenith angles and a broader set of detector configurations for a future contribution,
including hadronic showers.

We present the distribution of -2>A4, .2>A4 and ground energy ((4<) in figure 1. The dashed
lines in the histogram present the limits of our detectors at 160< from the center. Thus any results
near these lines are close to the border and outside are out of the detector limits. We define
the regions of interest in the figure 2. The central region is the region that -2>A4 < 120< and
.2>A4 < 120<. The region outside the detector limits is where at least one of the core coordinates
are in the region > 160<.

Figure 1: Shower’s parameter distribution: -2>A4 coordinates (center), the .2>A4 coordinates and ground
energy (4<(right).

Figure 2: The detector region of interest of shower center: (a) The central region, where -2>A4 < 120<
and .2>A4 < 120 (b) define the outside the border the region between where at least one of the core center
coordinates ,-2>A4 or .2>A4 is higher than 160<.

4. Results

We split randomly the data into two different sets: Training and Validation/Testing. The first
consist of 90% of the simulated showers. They were used to train the Neural Network. A set of
10% was used for validation and test purposes, they were not used to optimize the loss function,
but they were a consistency check of the training generalization. This set is also used to evaluate
the model performance. The training performance is presented in fig. 3. The model optimized for
the loss function, and the comparison between the validation set and training set did not present a
strong overfitting tendency, particularly for epoch 40 and beyond.

We present the summary of the best results within the Neural Networks tested in 4. We assess
our model performance using the bias, i.e., X-,.2>A4 = -,.2>A4 − -,.?A43 in the core position
recovered. We observe that in most of the ranges considered, the bias is lower than ±5<, and
it is lower than ±2< in some regions. Not surprisingly, the scenario changes near the borders;
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Figure 3: Training performance. Left: the loss per epoch. Right: Learning rate per epoch.
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Figure 4: The panels summarizes the results using a Bayesian Deep Neural Network using EfficientNet �0
architecture. The upper panels presents the -2>A4 (left) and .2>A4(right) bias. The lower panels present the
ground energy bias (%) for the region near the detector center (left) and outside detector range (right).

however, the bias still lower than 5< even outside the detectors. Due to the zenith angle, we
observe that the two boundaries are not symmetric. The best result for the ground energy deviation,
X�" = ((4< − (?A43)/(4< is presented in the lower panel of fig. 4 for two regions, in the left we
for a central region, i.e. the (a) region displayed in 2. The left plot presents the result for the region
(b) of the same figure, i. e., at least one coordinate outside the detector. We also present in fig. 5 the
results for ground energy for the EfficientNet model without the Bayesian approach. The ground
energy is constrained to less than 20% accuracy in the central regions for most of the range. The
result with an EfficientNet (not in a Bayesian version) could reach a 10% or less around 200 − 600
GeV. The estimate outside the detector has a higher deviation as expected. However, we still have
around 40% − 50% agreement in this region up to 600 GeV in the traditional Neural Network and
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Figure 5: The results for a non bayesian EfficientNet regression for ground energy. Left: ground energy
bias (%) for the region near the detector center. Right: ground energy bias (%) outside detector range.

40% − 60% for a Bayesian.

5. Discussion and Concluding remarks

5.1 Summary

In this proceeding, we present a newmethodology using Bayesian Neural Networks to constrain
the core center coordinates and its ground energy in Water Cherenkov Detectors. We describe the
method and present some preliminary results focusing on the region where traditional methods face
their major challenges, i. e., near detector borders and with the shower’s core outside the detector’s
range.

5.2 Discussion

The presented technique can constrain the core position and its energy at some level near and
outside the detector range. The Deep Learning methods such as presented here require a detailed
exploration to fine-tune the architecture and hyper parameters, which can significantly improve
the results. However, such an approach needs detailed and realistic simulations and should be
carefully designed for a specific scientific experiment. It is worth noticing that the method has a
better performance around 200GeV which is the region where more simulations are available. This
suggests that the method’s accuracy might be limited to the number of simulations in the range of
energy. A change in array geometry, for instance, would require a new study in order to find the best
solution. Nevertheless, the pursuance of such tailored made application is still a scientific case of
interest as we can investigate the limits imposed by the data of one can analyse and constrain EAS
near the borders and even outside the detector’s range.
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