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We investigate the evolution of the afterglow produced by the deceleration of the non-relativistic
material due to its surroundings. The ejecta mass is launched into the circumstellar medium with
equivalent kinetic energy expressed as a power-law velocity distribution � ∝ (ΓV)−U. The density
profile of this medium follows a power law =(A) ∝ A−: with : the stratification parameter, which
accounts for the usual cases of a constant medium (: = 0) and a wind-like medium (: = 2). A
long-lasting central engine, which injects energy into the ejected material as (� ∝ C1−@) was also
assumed. With our model, we show the predicted light curves associated with this emission for
different sets of initial conditions and notice the effect of the variation of these parameters on the
frequencies, timescales and intensities. The results are discussed in the Kilonova scenario.
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1. Introduction20

Long-duration gamma-ray bursts [lGRBs; )90 & 2 s; 1] are linked to supernovae [SNe; 2, 3]21

caused by the core collapse (CC) of dying massive stars [4, 5]. Short-duration gamma-ray bursts,22

on the other hand, are linked to the coalescence of binary compact objects (NS-NS or BH-NS)1 that23

result in kilonovae2 (KNe) [sGRBs; )90 . 2 s; 6–10].24

It is thought that enormous volumes of materials with a wide range of velocities are propelled25

in both cases. Non-relativistic ejecta masses such as dynamical ejecta, cocoon material, shock26

breakout material, and wind ejecta are propelled in NS-NS mergers [e.g., see 11–14] with velocities27

in the range 0.03 . V . 0.8 (expressed, hereafter, in units of the speed of light). Similarly, several28

ejecta masses with non-relativistic velocities smaller than V . 0.3 have also been observed in the29

context of CC-SNe.30

The interaction of the ejecta mass with the surrounding circumburst medium was suggested31

to characterize multi-wavelength afterglow observations on time scales ranging from days to many32

years in the non-relativistic domain [e.g., see 15–21]. Several authors, [e.g see 22–26], took into33

account the material launched during the coalescence of binary compact objects and computed the34

synchrotron emission in the radio bands. The authors assumed the existence of a free-coasting35

phase before the Sedov-Taylor expansion. Tan et al. [27] hypothesized that the shock wave’s kinetic36

energy may be characterized by a power-law (PL) velocity distribution. Ever since, several authors37

have proposed that the material ejected during binary compact object coalescence and the CC-SNe38

be characterized by a PL velocity distribution [e.g., see 10, 13, 28–39].39

In this proceedings, we provide a theoretical model that predicts the late-time multi-wavelength40

afterglow emission created by the deceleration of the outermost non-relativistic ejecta mass in a41

circumstellar medium. We assume interaction with a medium parametrized by a power law density42

profile =(A) ∝ A−: . We also express the equivalent kinetic energy of the outermost matter as a43

power-law velocity distribution � ∝ (ΓV)−U. Finally, we consider a long-lasting central engine44

with the kinetic energy as a power-law distribution � ∝ C1−@.45

The ejecta mass begins to decelerate after a long time, when the swept up quantity of material46

is similar to the ejected mass. Electrons are accelerated in forward shocks and cooled down by47

synchrotron radiation during this stage. We present the predicted synchrotron light curves for k = 0,48

1, 1.5, 2 and 2.5 that cover several ejecta masses launched during the coalescence of binary compact49

objects and the CC-SNe.50

The paper is organized as follows: In Section 2, we introduce the theoretical model that predicts51

the multi-wavelength afterglow emission generated by the deceleration of the non-relativistic ejecta52

mass.53

We assume for the cosmological constants a spatially flat universe ΛCDM model with �0 =54

69.6 km s−1 Mpc−1, ΩM = 0.286 and ΩΛ = 0.714 [40]. Prime and unprimed quantities are used for55

the comoving and observer frames, respectively.56

1NS corresponds to neutron star and BH to black hole.
2A fairly isotropic thermal transient powered by the radioactive decay of rapid neutron capture process nuclei and

isotopes
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2. Theoretical Model57

We model the afterglow as two components. The first one is the nonrelativistic ejecta mass58

(Γ ≈ 1). The second one is as the first one with the addition of the energy injection model:59

�2(C) = �̃injC
1−@ . (1)

The first component is assumed to follow a spherical profile of the form [41]60

�1 = �̃ (ΓV)−U ≈ �̃ V−U, (2)

where V is the shock front’s velocity and Γ ∼ 1 its Lorentz factor. In the nonrelativistic regime,61

the ejecta mass is described by the Sedov–Taylor solution. Then, the velocity can be written as62

V = V0 (1 + I)
3−:
5−: �

− 1
5−:

k �
1

5−:
)

C
:−3
5−: , (3)

where �) = �1 + �2 with �1 and �2 are given in Eqs. (1) and (2) and where the density63

parameter is denoted by �: and the redshift as I. Therefore, the Sedov–Taylor solution can be64

written in a general form as65

�̃ V−U + �̃injC
1−@ = V0:−5 (1 + I):−3 �k V

5−: C3−: . (4)

With this in mind, we have two limiting cases:66 {
�̃ V−U ∝ (1 + I):−3 �k V

5−: C3−: , �̃ >> �̃inj,

�̃injC
1−@ ∝ (1 + I):−3 �k V

5−: C3−: , �̃ << �̃inj.
(5)

Each limiting case leads to a different velocity; they are given by:67 
V ∝ (1 + I)−

:−3
U+5−: �

− 1
U+5−:

k �̃
1

U+5−: C
:−3

U+5−: , �̃ >> �̃inj,

V ∝ (1 + I)
:−3
:−5 �

1
:−5
k �̃

− 1
:−5

inj C
@+2−:
:−5 , �̃ << �̃inj.

(6)

Both cases may be written with just one expression:68

V = V0 (1 + I)−
:−3

U+5−: �
− 1

U+5−:
k �̃

1
U+5−: C

:−(@+2)
U+5−: , (7)

where the case �̃ >> �̃inj is obtained by setting @ = 1, while the case �̃ << �̃inj is obtained by69

setting U = 0 and �̃ = �̃inj. With this, we may also write the blast wave radius A ∝ (1 + I)−1 VC as:70

A = A0 (1 + I)−
U+2

U+5−: �
− 1

U+5−:
k �̃

1
U+5−: C

U+3−@
U+5−: . (8)

Synchrotron emission We assume an electron distribution described as 3#/3W4 ∝ W
−?
4 for71

W4 ≥ W<, where ? is the index of the elctron distribution and W< is the Lorentz factor of the72

lowest-energy electrons. During the deceleration phase, the electron Lorentz factors and the post-73

shock magnetic field evolve as, Wm ∝ C
2(:−(@+2) )

U+5−: , Wc ∝ C
−1+2@−: (−2+@−U)−U

U+5−: , and �′ ∝ C
− −4−:−2@+:@−:U

2(U+5−:) ,74

respectively. The corresponding synchrotron break frequencies and max flux density are given by:75

3
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a
syn
m ∝ (1 + I)

20+: (U−6)−2U
2(U+5−:) n2

e n
1
2
B �

U−5
2(U+5−:)
k �̃

10−:
2(U+5−:) C

− 10(2+@)+: (−7−@+U)
2(U+5−:)

a
syn
c ∝ (1 + I)−

8−2U+: (3U+2)
2(U+5−:) n

− 3
2

B (1 + . )
−2 �

− 3(U+3)
2(U+5−:)

k �̃
3(:−2)

2(U+5−:) C
− 8−6@+: (−7+3@−3U)+4U

2(U+5−:)

�
syn
a,max ∝ (1 + I)

4+2:−4U+3:U
2(U+5−:) n

1
2
B �

−2
z �

3U+7
2(U+5−:)
k �̃

8−3:
2(U+5−:) C

14−8@+: (−7+3@−3U)+6U
2(U+5−:) ,

(9)

where . is the Compton parameter, �I is the luminosity distance, n4 is the fraction of the76

shock’s thermal energy density that is transmitted to the electrons and n� is the fraction turned into77

magnetic energy density [20].78

Using the synchrotron break frequencies and the spectral peak flux density (eq. 9), the syn-79

chrotron light curves in the fast- and slow-cooling regime are:80

�
syn
a ∝


C

25−15@+2: (−7+3@−3U)+11U
3(U+5−:) a

1
3 , a < a

syn
c ,

C
20−10@+: (−7+3@−3U)+8U

4(U+5−:) a−
1
2 , a

syn
c < a < a

syn
m ,

C
− 10? (2+@)−8(5+U)+:? (−7−@+U)+2: (7−@+U)

4(U+5−:) a−
?

2 , a
syn
m < a ,

(10)

and81

�
syn
a ∝


C

31−7@+2: (−7+2@−2U)+9U
3(U+5−:) a

1
3 , a < a

syn
m ,

C
− 10? (2+@)+6(−8+@−2U)+: (21−5@+5U+? (−7−@+U) )

4(U+5−:) a−
?−1

2 , a
syn
m < a < a

syn
c ,

C
− 10? (2+@)−8(5+U)+:? (−7−@+U)+2: (7−@+U)

4(U+5−:) a−
?

2 , a
syn
c < a ,

(11)

respectively.82

3. Results and discussion83

Figure 1 shows examples of synchrotron light curves with this model. The purple curves84

stand for X-ray (1 keV), the green ones for optical (1 eV) and the blue ones for radio (1.6 GHz).85

Panels 1a and 1b correspond to a model without energy injection in an ISM and wind-like medium,86

respectively. Panel 1c shows the curves in a wind-like medium for the energy injection component.87

In all cases, an increase of the stratification parameter leads to a flattening of the rising flux and88

a steepening of the decreasing one. In the case of radio band, it also leads to the appearance of a89

double peak. By comparing the first two panels with the third one, it can be seen that the energy90

injection model leads to larger fluxes by about two orders of magnitude. The right panel also shows91

that the decrease of the flux starts at much later times than in models without energy injection.92

4
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(b) Wind : = 2
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(c) Wind : = 2 and @ = 0.8.

Figure 1: Synchrotron light curves from a sub-relativistic material decelerated in different circumburst
media.

The parameters used for Figure 1a are: �̃ = 1051 erg, nB = 10−2, ne = 10−1, �: = 1 cm−3,93

? = 2.8, @ = 1.0, U = 3.0, �I = 100 Mpc and I = 0.022.94

For Figure 1b, they are: �̃ = 1051 erg, nB = 10−2, ne = 10−1, �: = 3 × 1036 cm−1, ? = 2.8,95

@ = 1.0, U = 3.0, �I = 100 Mpc and I = 0.022.96

Finally, for Figure 1c, they are: �̃ = 1051 erg, nB = 10−2, ne = 10−1, �: = 3 × 1036 cm−1,97

? = 2.6, @ = 0.8, U = 0, �I = 100 Mpc and I = 0.022.98

4. Conclusion99

We have derived a model that describes the non-relativistic, adiabatic evolution of the forward100

shock described by the Sedov-Taylor solution. We have modeled the afterglow in two components:101

one that considers a long-lasting central engine that injects energy into the shock, which leads to102

the power-law dependence � ∝ �̃C1−@; and one that doesn’t assume energy injection and instead103

assumes a power-law energy distribution � ∝ (ΓV)−U. We have also taken into account that the104

ejecta interacts with a medium parametrized by a power law number density distribution � ∝ '−: .105

This general approach is advantageous, as it allows one to not only consider a homogeneous medium106

(: = 0) and a wind-like medium (: = 2), but regions with non-standard stratification parameters,107

in particular : = 1, 1.5 or 2.5. It also allows one to transition between energy injection models to108

models without it by the change of two parameters: U and V.109

We have calculated, for both components, the synchrotron light curves in the fast- and slow-110

cooling regimes and we have analyzed their behaviour for different sets of parameters. In the case111

of variation of the stratification parameter, we have noticed that an increase of this parameter leads112

to flatter profiles when the flux increases. It also leads to the appearance of a double-peak behavior113

in the radio band. As for the case of the comparison between energy injection with models without114

it, we have shown that the flux increases in general and the moment when it begins to decrease115

happens later when energy injection is considered.116

5
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