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The origin and nature of ultra-high-energy cosmic rays (UHECRs) remain an open question
in astroparticle physics. Motivated by the need for an unprecedented aperture for further ad-
vancements, the Fluorescence detector Array of Single-pixel Telescopes (FAST) is a prospective
next-generation, ground-based UHECR observatory that aims to cover a huge area by deploying
a large array of low-cost fluorescence detectors. The full-scale FAST prototype consists of four
20 cm photomultiplier tubes at the focus of a segmented mirror 1.6m in diameter. Over the last
five years, three prototypes have been installed at the Telescope Array Experiment in Utah, USA,
and one prototype at the Pierre Auger Observatory in Mendoza, Argentina, commencing remote
observation of UHECRs in both hemispheres. We report on the latest results of these FAST pro-
totypes, including telescope calibrations, atmospheric monitoring, ongoing electronics upgrades,
development of sophisticated reconstruction methods, and UHECR detections.
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1. Detection of ultra-high-energy cosmic rays

Since the discovery of cosmic rays above 100EeV (≡ 1020 eV) in 1963 [1], scientists have
constructed increasingly-large observatories to detect ultra-high-energy cosmic rays (UHECRs).
UHECR sources and acceleration mechanisms at the highest energies are still largely unknown [2],
making them one of the most intriguing mysteries in particle astrophysics. Since they are deflected
less strongly by magnetic fields (due to their enormous kinetic energies), their arrival directions
are more significantly correlated with their sources. Charged-particle astronomy with UHECRs is
hence a potentially viable probe of extremely energetic phenomena in the nearby universe.

Two well-established methods are used for UHECR detection: arrays of detectors (e.g. plastic
scintillators or water-Cherenkov stations) that sample extensive air shower (EAS) particles at the
ground level and large-field-of-view telescopes that directly measure atmospheric shower develop-
ment by observing ultra-violet nitrogen fluorescence. The two largest UHECR observatories are
hybrid detectors that combine both techniques, employing arrays of ground detectors overlooked
by fluorescence detectors (FDs). These are the Pierre Auger Observatory (Auger) in Mendoza,
Argentina [3], and the Telescope Array Experiment (TA) in Utah, USA [4, 5].

Recent results have shown novel structures at higher energies. Figure 1 shows full-sky maps
of residual intensities measured by both Auger and TA observatories above the “ankle” energy
of ∼10 EeV and the “cutoff” energy of ∼50 EeV, calibrated by an energy scale from the common
declination band’s flux [6, 7]. Auger reported a large-scale dipole anisotropy above 8 EeV of 6.5%
amplitude with a 5.2f significance [8], which supports an extragalactic origin for these particles.

(a) Equatorial, Ankle, 45◦ oversampling (b) Galactic, Ankle, 45◦ oversampling

(c) Equatorial, Cutoff, 20◦ oversampling (d) Galactic, Cutoff, 20◦ oversampling

Figure 1: Residual intensity sky-maps in Equatorial and Galactic coordinates: (a, b) above the ankle energy,
with a 45◦ top-hat oversampling; and (c, d) above the cutoff energy with a 20◦ top-hat oversampling. The
event data are taken from [6, 7].
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Auger also has reported a 4.0f correlation between the positions of nearby starburst galaxies and
the arrival directions of 9.7% of their measured UHECR events above 39 EeV [9]. TA has measured
an excess of cosmic rays above 57 EeV as a “hotspot” centered at a right ascension of 147◦ and a
declination of 43◦ with a 3.4f significance [10] and has also reported results consistent with Auger
for the dipole search [11] and the flux pattern analysis [12].

Further results at the highest energies are limited by statistics due to sharp attenuation of
the spectrum. Future ground arrays will require an unprecedented aperture (exceeding current
experiments by an order of magnitude) and mass composition sensitivity above 100 EeV. Future
detectors should hence be low-cost and easy to deploy, operate and maintain. A worldwide
collaboration is necessary to construct such an array.

2. Fluorescence detector Array of Single-pixel Telescopes (FAST)

One way to achieve this unprecedented aperture is a ground-based fluorescence detector array.
The Fluorescence detector Array of Single-pixel Telescopes (FAST)1 features compact FD tele-
scopes with a smaller light-collecting area and far fewer pixels than current-generation FD designs,
leading to a significant reduction in cost that allows for the production of more FD units.

In the FAST design, a 30◦ × 30◦ field-of-view is covered by four 20 cm photomultiplier-tubes
(PMTs) at the focal plane of a compact segmented mirror of 1.6m diameter [14]. Its smaller
light-collecting optics, smaller telescope housing, and fewer number of PMTs significantly reduces
its cost to be ∼35 kUSD per telescope. Each FAST station would consist of 12 such telescopes,
covering 360◦ in azimuth and 30◦ in elevation. These stations would be deployed in a triangular
arraywith a 20 km spacing, suggested by simulations. Figure 2 shows the simulatedwaveforms from

1https://www.fast-project.org
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Figure 2: The Fluorescence detector Array of Single-pixel Telescopes: a possible solution for a future giant
ground array [13]. The traces show simulated signals emitted from a UHECR with an energy of 40 EeV and
a zenith of 50◦.
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a UHECR shower detected in 3-fold coincidence by such an array. To achieve our aperture goals,
500 stations covering 150,000 km2 are required, after accounting for the standard FD duty-cycle
and additional moon-night operation.

3. Progress of developments on the FAST prototypes

Motivated by UHECR detections with a single 20 cm PMT at the focus of a 1m2 Fresnel
lens in 2014 [13], we installed three full-scale FAST prototypes at the TA site from 2016 to
2019, as shown in Figure 3(a)-left [15]. We assembled the telescope frames on-site, mounted
the PMTs in their camera boxes, and installed ultra-violet band-pass filters at their apertures. We
then astrometrically aligned the telescopes using a camera mounted to their frames’ exteriors [14].
Following this, we began observation via remote connection, using external triggers from the
adjacent TA fluorescence detector. We used an automated all-sky monitoring camera to record
cloud coverage and atmospheric transparency [16]. As shown in Figure 3(a)-right, an identical
FAST prototype was also installed at the Auger site for a cross-calibration of energy and -max

scales.
Analyzing 224 hours of data measured by the FAST prototypes at the TA site fromMarch 2018

to October 2019, we found 964 showers with corresponding monocular reconstructions from the
TA FD [17]. We searched for significant signals (defined as a ≥ 6f signal-to-noise ratio over ≥ 500

図2

39
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(a) FAST prototypes installed at TA and Auger observatories
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Figure 3: (a) The three FAST prototypes installed at the Black Rock Mesa site of the Telescope Array
Experiment and the one prototype installed at Los Leones site of the Pierre Auger Observatory. (b) Im-
pact parameter and (c) time-average brightness for the coincidence search between TA FD and FAST. (d)
Preliminary result of top-down Energy and -max reconstructions for multi-hit events above 1 EeV.
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Figure 4: Reconstruction bias on (a) 〈-max〉 and (b)f(-max) evaluated by only the neural network first-guess
estimation. (c) Reconstructed -max distributions in each energy bin.

nanoseconds) in time coincidence with these FD events and found 179 significant FAST events out
of the 964 TAEASs, with 59 events producing significant signals in more than one PMT. Figure 3(b)
and (c) show the impact parameter and time-average brightness of the detected EASs as a function
of energy, split by single-PMT and multi-PMT events. These parameters are reconstructed by the
TA FD.

A “top-down” reconstruction algorithm has been implemented that determines the best-fit
shower parameters by comparing our measured traces to the simulated ones [15]. Because FAST
features only four pixels, rather than use the entry and exit times for each pixel as traditional
reconstruction methods do, we extract timing information from each individual bin of the traces.
Figure 3(d) shows preliminary -max and energy values reconstructed by this method for multi-hit
events above 1 EeV using only FAST prototypes.

4. Neural network first-guess estimation

The top-down reconstruction requires a reasonable first-guess geometry to reduce computa-
tional time. This is provided by a neural network first-guess estimation [20]. The total signal,

5
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Figure 5: (a) Trigger efficiency for 3-fold detections with a hypothetical FAST array. (b) Expected 95%
C.L. detectable sensitivities of the energy spectrum with the full FAST array of 500 stations compared to the
spectra reported from TA [18] and Auger [19].

centroid time, and pulse height of each PMT with a significant signal are used as inputs. The
outputs are six parameters: -max, energy, zenith, azimuth, and west-east/south-north core positions.
The model uses the Keras/Tensorflow library with two hidden fully-connected layers.

The resolution and detection bias on -max are evaluated by only applying this first-guess
estimation for EASs of four primaries (proton, helium, nitrogen, and iron) with three hadronic
interaction models (EPOS-LHC, QGSJetII-04 and Sibyll 2.3c) [21]. The EASs are generated with
uniformly-distributed arrival directions and core positions randomly generated in the triangular
array’s inner circle. The resolutions are 4.2 degrees in arrival direction, 465m in core position,
8% in energy, and 30 g/cm2 on -max at 40 EeV for 3-fold coincidences without any quality cuts.
Figure 4 shows a preliminary detection bias on 〈-max〉 and f(-max), and also reconstructed -max

distributions in each energy bin. Note that this performance is evaluated by only the neural network
first-guess estimation. The full-chain performance of both top-down reconstruction and neural
network first-guess estimation is being investigated.

The trigger efficiency for 3-fold detections is shown in Figure 5(a). The FAST array has a
100% efficiency above 20 EeV. The energy threshold is related to the bias on the average 〈-max〉
and f(-max) as shown in Figure 4. Figure 5(b) is the expected sensitivity on the energy spectrum
with a full-size FAST array. We use an effective exposure of 90,000 km2 sr per year to estimate
our detectable flux at the 95% confidence level. A full-sized FAST array will extend UHECR
measurements beyond 300 EeV.

5. Developments for stand-alone observation of FAST array

Since these tests, several advances have been made: improvements in our telescope design,
development of electronics with low-power consumption, and improvements in PMT calibration
systems, as shown in Figure 6. The improved electronics is particularly important as previous tests
have capitalized on the infrastructure of existing FD detectors. These new electronics will allow for

6



P
o
S
(
I
C
R
C
2
0
2
1
)
4
0
2

Latest results of UHECR measurements with prototypes of FAST Toshihiro Fujii

Figure 6: Developments for future stand-alone operations: the lighter telescope frame and mirror design
with fewer pieces, the new electronics under development, and the PMT calibration system using a robotic
arm.

the first deployment of an independent, solar-powered FAST station, as well as permit stand-alone
observation with the FAST array, an important step in validating our design and testing our expected
resolution. The potential infield calibration could be performed using an extended uniform light
source such as the integrating sphere [22].

6. Summary

We have developed a low-cost, easily-deployed fluorescence detector optimized for detection
of the highest energy cosmic rays in anticipation of a future array with 30,000 km2 of effective
coverage. Three FAST prototypes have been installed at the Telescope Array Experiment, and one
prototype has been installed at the Pierre Auger Observatory. We have begun observations in both
hemispheres and have demonstrated the viability of sophisticated, novel reconstruction methods.
We will continue the steady operation of all four FAST prototypes and developments stand-alone
observations with the FAST array.
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