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1. Introduction

The Telescope Array (TA) cosmic ray observatory is the largest hybrid cosmic ray detector
in the northern hemisphere designed to detect ultra high energy cosmic rays. The main part of
the experiment consists of a surface detector (SD) array that is overlooked by three fluorescence
detector (FD) stations. TA SD consists of 507 scintillation counters with 1200 m spacing and
covering a total of ∼ 700 km2 area on the ground. The three TA FD stations are Black Rock Mesa
(BRM), Long Ridge (LR), and Middle Drum(MD). These TA FD telescopes are viewing 3◦ to 31◦

in elevation.
The Telescope Array Low-energy Extension(TALE), located at the north part of the TA Exper-

iment site, is aimed at measuring the energy spectrum and the mass composition of very high energy
cosmic rays above 1016 eV. The TALE detector consists of one FD station with ten fluorescence
telescopes and an array of 80 scintillation surface detectors, which were deployed to cover a total
area of approximately 20 km2. The TALE-FD began operation in 2013 at the MD station. All
10 telescopes were refurbished from components previously used by HiRes [1], and view 31° to
59° in elevation, directly above the field of view of the MD telescopes. The TALE telescopes are
instrumented with FADC electronics. The TALE-SD consists of 40 scintillation counters with 400
m and 40 counters with 600 m spacing, and started observation from 2017. In addition, an external
trigger from the TALE-FD to the TALE-SD to detect low energy cosmic rays, so-called hybrid
trigger system, was installed in 2018. The TALE detector configuration is shown in Fig. 1. The full
details of the detectors are found in [2] [3] .

MD +
TALE-FD

40 SDs with
400m spacing

40 SDs with
600m spacing

tale map

Figure 1: Left: The layout of the TALE detector. Open square boxes represent the locations of the TALE SD
counters and small filled circle correspond to the MD / TALE FD station. The arrows represent azimuthal
viewing ranges of both FDs. Top-Right: A deployed SD in the field. Bottom-Right: The TALE telescopes.

2. Event Reconstruction

The event reconstruction procedure consists of the following main steps: First, the shower-
detector plane (SDP) is reconstructed from the pattern and pointing direction of the triggered PMT
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pixels.
Next, we apply Profile-Constrained Geometry Fit (PCGF) reconstruction [4] which simultane-

ously fit the shower geometry and the shower profile. We successfully reconstructed low energy
events by PCGF in the monocular analysis [3], and we use it also here. The shower geometry is
calculated by the time vs angle fit which uses the pointing directions and timings of the PMTs. The
expected timing of i-th PMT is

texp,i = tcore +
1
c

sinψ − sinαi

sin(ψ + αi)
rcore (1)

where texp,i and αi are the expected timing and elevation angle in the SDP for the i-th PMT,
respectively, tcore is the timing when the air shower reached the ground, rcore is the distance from
the FD station to the shower core, and ψ is at an shower inclination angle in the SDP. For an event
that has the timing information of one SD near the shower core, tcore is expressed by

tcore = tSD +
1
c

(rcore − rSD)cosψ (2)

where tSD is the timing of the leading edge of the SD signal. This is an advantage of the hybrid
reconstruction technique. The two observable, tSD and rSD, are added to the relation of the eq(1),
and as a result the number of the fitting parameter is reduced to two and the geometry determination
accuracy is improved. The quantity to be minimized in the fitting is written as

χ2 =
∑

i

(texp,i − ti)2

σ2
t,i

(3)

where σt,i is the fluctuation of the signal timing. Once the shower geometry is determined, the
shower profile is fitted using the Gaisser-Hillas parameterization formula [5]

N (x) = Nmax

(
x − X0

Xmax − X0

) Xmax−X0
λ

exp
(

Xmax − x
λ

)
(4)

where N (x) is the number of charged particles at a given slant depth, x, Xmax is the depth of shower
maximum, Nmax is the maximum number of particles at Xmax, X0 is the depth of the first interaction,
and λ is interaction length of shower particles.

Two examples of the data event triggered by TALE Hybrid detector are shown in Fig. 2 and
Fig. 3. Fig. 2 is typical one telescope cherenkov dominated event observed by the TALE detector.
Fig. 3 is high energy event observed by MD and TALE detectors. In the later event, the shower
profile reconstruction was done using both MD and TALE PMT signals.

3. Monte Carlo Simulation and Data / MC Comparison

The performance of our detectors and the reconstruction programs are evaluated using our
Monte Carlo program. The TALE MC package consists of two parts, those are the air shower
generation part and the detector simulation part. We generate cosmic ray showers using the
CORSIKA-based MC simulation code developed for TA [6]. Here we use proton and iron primary
particles with QGSJETII-04 [7] hadronic interaction model. The generated MC follow a broken
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Figure 2: One-telescope low energy cherenkov event. Left: SD display. Reconstructed shower direction
is indicated by magenta arrow and crossed point is the reconstructed shower core position. Top-Right: FD
display. Bottom-Middle: Time vs angle fit. The blue triangle makers are FD PMT timing and inverted
triangle are SD timing. The red inverted triangle is a detector which is used in eq(2). Bottom-Right:
Reconstructed shower profile with relative contributions of fluorescence light, cherenkov light and scattered
cherenkov light.

Figure 3: High energy fluorescence event. Left: SD display. Top-Right: FD display. Bottom-Middle: Time
vs angle fit. Bottom-Right: Reconstructed shower profile.

power low spectrum which spectrum index is -2.9 below 1017.1 eV and is -3.2 above 1017.1 eV. All
of the calibration factors with time dependence are applied to SD and FD detector simulations.

Fluorescence events dominate at energies above 1017.5 eV , and cherenkov events dominate
at below 1017 eV. Fluorescence and cherenkov events have very different characteristics, so that
different event selection criteria were applied for the different types of events, as summarized in
Table 1, in order to remove poorly reconstructed events and ensure good detector resolution. Here
we define fluorescence events as fractional contribution to the total signal of Fluorescence Light
(FL) > 0.75, and cherenkov events as fractional contribution to the total signal of FL ≤ 0.75. Fig. 4
shows the resolution of the important shower parameters. We obtain the resolutions of ∼ 3 % in
Rp, ∼ 1◦ in ψ angle, ∼ 30 g/cm2 in Xmax and ∼ 10 % in energy(E ≥ 1016.5 eV). In addition,
Data/MC comparisons were performed with TALE-Hybrid events to show that our MC describes
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the observed events well as shown in Fig. 5. The data and MC were applied the same quality cuts
to be compared.

Variable CL FL
No saturated PMTs in FD applied
SD detected ≥ 3 MIPs applied
Xmax bracketing cut applied
Angular track-length [deg] track > 6.5◦
Event duration [ns] > 100 ns
# of PMTs > 10
# of Photo-electrons / # of PMTs > 50
# of Photo-electrons > 2000

Table 1: Quality Cuts Applied in this study
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Figure 4: Reconstruction resolutions of the impact parameter Rp , the shower inclination angle in the SDP
ψ, the shower maximum Xmax, and the shower energy E respectively. Top panels are shown for proton MC
case and bottom panels are shown for iron MC case. The black curve is a Gaussian fit to the distribution of
the uncertainty.

4. Composition Analysis

The TALE Hybrid data collected between November 2017 and February 2021 is included in
the analysis. The total detector on-time in this period is ∼ 980 hours. We presented the results of
a measurement of the cosmic rays composition in the energy range of 1016.6 - 1018.4 eV. Fig. 6a
shows Xmax distributions divided by 4 energy ranges. The black points with error bar are measured
Xmax, the red distribution is pure proton MC prediction and the blue distribution is pure iron MC
prediction. Reconstructed TALE Hybrid events mean Xmax as a function of shower energy is shown
in Fig. 6b. Reconstructed Xmax values for 2 MC primaries shown alongside the data for comparison.
We also show mean Xmax measured by the main TA Hybrid detector [8] and HiRes/MIA [9].
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Figure 5: Data / MC comparisons. From left to right, the impact parameter Rp, the shower inclination angle
in the SDP ψ, respectively. The black points with error bars show the data, while the proton/iron MC is
shown by the red/blue histogram. The MC has been normalized to the same number of events as the data.
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Figure 6: (a): Xmax distributions compared with the expected distributions estimated by pure component
MC. (b): Mean Xmax as a function of shower energy, measured by TALE Hybrid detector.

5. Energy Spectrum

To evaluate the energy spectrum, it is essential to calculate an aperture and an exposure of the
Hybrid detector. The aperture cannot calculate a simple geometrical factor because it depends on
not only the energies, but also the performance of FD, atmospheric models, PMT gains and primary
particles. Thus, we estimate the aperture of our detector using MC simulations including these
dependences. The aperture is calculated by

AΩ(E) = AΩgen · Nrecon(E)/Nthrown(E) (5)

where E is the primary energy of cosmic ray, AΩgen is the thrown aperture region ofMC simulation,
Nrecon is the number of reconstructed events and Nthrown is the number of thrown events. Then we
obtain the exposure to multiply the aperture by the total on-time. Fig. 7a shows estimated exposure
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with proton, iron and H4a [10] composition assumption. The bottom panel of Fig. 7a shows the
relative differences in the exposure to proton, iron and H4a assumption with respect to the 50 %
proton + 50 % iron mixture. The proton and iron points are shifted slightly to allow for greater
visibility. Knowing the exposure, we calculate a preliminary energy spectrum. The energy spectrum
is evaluated by the aperture assuming the H4a composition. The missing energy also estimated
using by H4a composition assumption. It is shown in Fig. 7b with the latest measurements by TA.
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Figure 7: (a): Estimated exposure over the time period of 11/2017-02/2021. (b):The cosmic rays energy
spectrum measured with TALE Hybrid detector. Here we use primary composition given by the H4a model.
We also show measurements by TA using 9.5 yrs FDs at BRM and LR data [11], by 11 yrs TA-SD data [12]
and 2 yrs TALE FD monocular data [3].

6. Conclusion

The total of 80 SDs were deployed and the TALE SD array started operation. In addition the
observation with hybrid triggering system started in November 2018. We report on a first result of
the preliminary cosmic ray composition and spectrum measured by TALE Hybrid detector. The
obtained spectrum is consistent with our previous measurements. An examination of the mean Xmax
versus energy, shows a change in the Xmax elongation rate at an energy ∼ 1017.1 eV.
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