
P
o
S
(
I
C
R
C
2
0
2
1
)
2
9
6

ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE

Berlin |  Germany

ONLINE ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE

Berlin |  Germany

37th International 
Cosmic Ray Conference

12–23 July 2021

Measurement of the Proton-Air Cross Section with
Telescope Arrays Black Rock, Long Ridge, and Surface
Array in Hybrid Mode.

Rasha Abbasi0,∗ and William Hanlon1 on behalf of the Telescope Array Collaboration
(a complete list of authors can be found at the end of the proceedings)
0Department of Physics, Loyola University Chicago, Chicago, U.S.A.
1The Smithsonian Astrophysical Observatory
E-mail: rabbasi@luc.edu

Ultra High Energy Cosmic Ray (UHECR) detectors have been reporting on the proton-air cross
section measurement beyond the capability of particle accelerators since 1984. The knowledge of
this fundamental particle property is vital for our understanding of high energy particle interactions
and could possibly hold the key to new physics. The data used in this work was collected over eight
years using the hybrid events of Black Rock (BR) and Long Ridge (LR) fluorescence detectors as
well as the Telescope Array Surface Detector (TASD). The proton-air cross section is determined
at
√
B = 73 TeV by fitting the exponential tail of the -<0G distribution of these events. The

proton-air cross section is then inferred from the exponential tail fit and from the most updated
high energy interaction models. finel

p−air is observed to be 520.1 ± 35.8 [Stat.] +25.3
−42.9[Sys.] mb. This

is the second proton-air cross section work reported by the Telescope Array collaboration.

37th International Cosmic Ray Conference (ICRC 2021)
July 12th – 23rd, 2021
Online – Berlin, Germany

1(a complete list of authors can be found at the end of the proceedings)
∗Presenter

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:rabbasi@luc.edu
https://pos.sissa.it/


P
o
S
(
I
C
R
C
2
0
2
1
)
2
9
6

p-air cross section with TA Rasha Abbasi

1. Introduction

Ultra High Energy Cosmic Ray (UHECR) detectors have been reporting on the proton-air
cross section measurement beyond the capability of particle accelerators since 1984 [4–6, 9, 10, 20,
23, 27]. UHECRs offer a unique opportunity as testing grounds for physics beyond the standard
model, as they represent a class of particles in the energy frontier beyond what can be generated in
human-made accelerators. UHECRs provide a way to measure the proton interaction cross section
at energies beyond those that can be achieved in the lab to test standard model predictions of how
the cross section evolves with energy.

The knowledge of this fundamental particle property is vital for our understanding of high
energy particle interactions and could possibly hold the key to new physics. This work presents the
second Telescope Array report on the proton-air cross section [3]. The first result was reported in
2015 using theMiddleDrum (MD)fluorescence detector and the surface detector in hybridmode [1].
In this proceeding, we are reporting on the inelastic proton-air cross section, at

√
B = 73 TeV, using

eight years of data observed by Black Rock Mesa (BRM) and Long Ridge (LR) fluorescence
detectors (FDs) and the surface detector (SD) in hybrid mode.

While more UHECR events have been observed by the Telescope Array detector since the
first report, the BRM and LR detectors used in this analysis, are closer in distance to the Surface
Detector (SD) array as shown in Figure 1. This enables us to study the inelastic proton-air cross
section with higher statistical power for lower energy events.

The technique used to analyze these events is similar to that used in the first proton-air cross
section report [1] (the  -Factor method). The statistical power, on other hand, increased by a factor
of four. Note that, all the systematic sources are revisited and updated, in addition to using the latest
hadronic models QGSJETII.4 [24],QGSJET01 [21],SIBYLL2.3 [17], and EPOS-LHC [26].

The proton-proton cross section is also calculated in this work using Glauber formalism [18]
and BHS fit [12]. The new inelastic proton-air and the total proton-proton cross section results are
compared with the previous experimental results and with the predictions of the models.

2. Data Analysis

The analysis to obtain the proton-air inelastic cross section (finel
p−air) is divided into two parts.

The first part is the calculation of the value of the attenuation length (Λ<) of the observed UHECR
events. In the second part, we calculate the inelastic proton-air inelastic cross section (finel

p−air) value
from the obtained attenuation length Λ<.

2.1 Measuring the Attenuation Length Λ<

Ideally, observation of the distribution of the amount of material (-1), penetrated by the shower
before the first interaction would allow estimating the proton-air cross section directly. However,
-1 is not a direct observable. Therefore, UHECR detectors have been reporting on the proton-air
cross section using the slant depth at the shower maximum referred to as -<0G .

The value of attenuation lengthΛ<, and therefore the proton-air cross section, can be calculated
by fitting the -<0G distribution tail to the exponential function 4

−-<0G
Λ< . Here only the tail of the

-<0G distribution is used to obtain Λ<, because it is the most penetrating part of the distribution
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Figure 1: The Telescope Array detector configuration. The filled squares are the 507 SD scintillators on
a 1.2 km grid. The SD scintillators are enclosed by three fluorescent detectors shown in filled triangles
together with their field of view in solid lines. The northernmost fluorescence detector is called Middle
Drum while the southern fluorescence detectors are referred to as Black Rock Mesa and Long Ridge. The
filled circle in the middle equally spaced from the three fluorescence detectors is the Central Laser Facility
used for atmospheric monitoring and detector calibration.

and is assumed to comprise of mostly protons. The choice of the of the fit range for the exponential
fit is made to maximize the number of events in the tail distribution while minimizing instability in
the value of Λ< due to possible detector bias or helium contamination. The exponential fit to the
slope is done using the unbinned likelihood method between 790 and 1000 g/cm2.

Figure 2 shows the -<0G distribution of the of the hybrid event data collected by the Telescope
Array southernmost fluorescence detectors Black Rock Mesa (BRM) and Long Ridge (LR) and
the surface detector (SD). The distribution includes 1975 events in the energy range between
1018.20=31019 eV with an average energy of 1018.45 eV.

Several systematic checks are applied to test for the stability of the measured attenuation length
Λ<. This is done by dividing the data in two halves based on: the zenith angle, the distance of the
shower using the impact parameter '?, and the energy of the event. The subsets divided are found
to be consistent within the statistical fluctuations.

Moreover, the systematic effect of possible energy dependent bias in the -<0G distribution was
studied. This is done by shifting the values of -<0G by their elongation rate prior to fitting. The
systematic effect from a possible energy bias in the value of Λ< was found to be negligible.

Systematic effects due to detector bias is tested by comparing the attenuation length calculated
with and without detector effects. First, the attenuation length Λ< is calculated from CONEX
simulations, where the detector effect is not included. Afterwhich,Λ< is calculated fromCORSIKA
simulation, where the events are propagated through the detector, reconstructed, and the quality
cuts applied. The systematic error from the difference in Λ< was found to be consistent within the
statistical fluctuations.

The final Λ< reported by the Telescope Array detector at an average energy of 1018.45 eV

3
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Figure 2: The number of events per -<0G bin (Δ-<0G) vs. -<0G g/cm2 for BRM LR fluorescence detector
and the Telescope Array surface detector in hybrid mode. The line is the exponential fit to the slope using
the unbinned likelihood method in 790-1000 6/2<2 range.

including the statistical checks is found to be Λ< = 55.9 ± 3.8 [Stat.]. Note that Λ< is directly
derived from the data and is model independent. Therefore, it can be used at a later time to calculate
the inelastic proton-air cross section independently of the method or the UHECR models used in
this paper.

2.2 Proton-Air cross Section Measurement

The inelastic proton-air cross section f8=4;
?−08A is directly linked to the interaction mean free path

of proton in air _?−08A by the equation f?−08A =
<<08A>

_?−08A
. Where < <08A > is the mean target mass

of air with the value of 24160 mb g cm−2.
To determine the interaction mean free path of proton in air _?−08A and therefore the inelastic

proton-air cross sectionwe use the -Factor technique. Here, the exponential slope of the attenuation
length is related to the hadronic interaction length by Λ< =  _?−08A . The  values are determined
from the high energy models.

The calculation of the values of  is discussed in detail in [1] and [3]. The value of  is deter-
mined by measuring the ratioΛ</_?−08A using a one-dimensional air shower Monte Carlo program
CONEX 6.4 [11, 13, 25]. The  value is obtained for each high energy model QGSJETII.4 [24],
QGSJET01 [21], SIBYLL2.3 [17], and EPOS-LHC [26] and the corresponding average value of
the inelastic proton-air cross section including the statistical fluctuation is found to be finel

p−air =
520.1±35.8 [Stat.] mb.

A systematic uncertainty due to model dependence is reported. This done by quantifying the
maximum variation in the finel

p−air value for each model from the average finel
p−air obtained from all the

high energy models. This uncertainty was found to be equal to ± 15 mb.
The impact of contamination from other primaries is also considered. The systematic effect

of other elements in the tail beside proton including photon, CNO, helium and iron is investigated.
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Only photons and helium introduce a bias in the inelastic proton-air cross section.
The upper limit of cosmic-ray photon fraction at the energy range in this study is found to

be ∼1.0%, which is the best upper limit in the Northern Hemisphere reported from the Yakutsk
air-shower array [19]. The systematic uncertainty due to 1.0% gamma contamination is found to be
+20 mb.

A recent study done by the Telescope Array indicates that the contamination of helium between
1018.2 and 1019.0 eV is under 43.8%. Using this limit, the systematic uncertainty due to helium
contamination is found to be −40 mb.

The final proton-air cross section reported by the Telescope Array detector at an average
energy of 1018.45 eV using the  -Factor method and including the statistical and systematic checks
is f8=4;

?−08A = 520.1 ± 35.8 [Stat.] +25.3
−42.9[Sys.] mb. This result is shown in Figure 3 and is compared

to other experimental measurements and current high energy model predictions.

Figure 3: The proton-air cross section result of this work in comparison to previous experimental results
[4–6, 9, 10, 20, 23, 27]. In addition, the high energy models (QGSJETII.4, QGSJET01, SIBYLL 2.3,
EPOS-LHC) cross section predictions.

2.3 Proton-Proton Cross Section

The analysis to convert from the inelastic proton-air cross section to proton-proton cross section
consist of two parts. The first part is done by converting the measured inelastic proton-air cross
section to the possible allowed values of the proton-proton cross section in the (fC>C

?? -B) plane.
where fC>C

?? is the total proton-proton cross section and B is the forward scattering elastic slope. The
conversion is obtained using Glauber formalism [18]. The second part is done by calculating the
intersection of the curves with one of the prediction models Block, Halzen, and Stanev (BHS) [12]
. Note that the BHS model can be replaced with other models or predictions to solve for the fC>C

?? .
Note the BHS model is both consistent with the unitarity constraint while describing the pp and ?̄p
cross section data from the Tevatron [14, 16].
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The proton-proton cross section in this work is found to be fC>C
?? = 139.4±+23.4

−21.3 [Stat.]
+15.7
−25.4[Sys.] mb. This result is shown in Figure 4 in comparison to previously reported values
by UHECR experiments [4, 9, 10, 20]. The recent result from LHC by TOTEM at

√
B = 7 and 13

TeV [7, 8] is also shown, in addition to the BHS fit [12]. The best fit of the proton-proton total cross
section data by the COMPETE collaboration is also added [15].
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Figure 4: A compilation of the proton-proton cross section vs. the center of mass energy result of this
work and previous work by cosmic rays detectors[ [1], [9], [20], [10], [4]]. The dashed red curve is the
BHS fit [12] and the dashed black curve is the fit by the COMPETE collaboration citecompete. This plot is
adapted and modified from [12].

3. Conclusion and Outlook

Telescope Array has measured the inelastic proton-air cross section of ultra high energy cosmic
rays at

√
B = 73TeV.Thismeasurement is performed for energies that are not accessible to accelerator

experiments, therefore provides an important and unique test of standard model predictions about
the fundamental nature of matter.

The Telescope Array utilizes a large array of surface detectors and fluorescence telescopes to
record the atmospheric depth of maximum size of air showers initiated by inelastic collisions of ultra
high energy cosmic rays and air molecules in the upper atmosphere. By combining the geometric
and timing information of SDs and the Black Rock Mesa and Long Ridge FDs, the observe a hybrid
event -max can be determined with a good precision of ∼ 20 g/cm2. Using nearly nine years of
hybrid data, TA measures finel

p−air = 520.1 ± 35.8 [Stat.] +25.3
−42.9[Sys.] mb for

√
B = 73 TeV. Using

Glauber theory and the Block, Halzen, Stanev model. The total proton-proton cross section is
determined from finel

p−air to be f
tot
pp = 139.4+23.4

−21.3[Stat.]
+15.7
−25.4[Sys.] mb.

Future cross section results, using TA×4 [22] will allow us to report on the proton air cross
section with greater statistical power. Moreover, including data from the Telescope Array Lower
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Extension [2] would allow the measurement in 1017−1019 eV range with high statistical power and
at several energy intervals. This would allow us to make a statement on the functional form of the
cross section energy dependence.
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