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magnetic fields in the galaxy and those beyond. Motivated by a significant detection of the
large-scale anisotropy above 8 EeV by the Pierre Auger Observatory (Auger), we had previously
reported, using 11 years of Telescope Array (TA) surface array data, a result compatible both with
that of Auger, and with an isotropic source distribution [1]. In this contribution, we will show the
preliminary updated results using 12 years TA SD data to search for the large-scale anisotropy at
the highest energies.
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1. Introduction

Over 100 years after the discovery of cosmic rays, there are stillmany open questions concerning
the origin and nature of ultrahigh-energy cosmic rays (UHECRs) [2, 3]. With small deflections
of UHECRs by galactic and intergalactic magnetic fields, ∼ 5◦/ (�/50 EeV)−1, (where / is the
charge of nuclei [4]), a small-intermediate scale anisotropy 1 is predicted at the highest energies.
On the other hand, the distance to sources and deflections by magnetic fields are increased at lower
energies around 10 EeV, but still allowing for the possibility of a large-scale anisotropy, such as one
that might be approximated as a dipole [5–7].

1.1 Telescope Array experiment

The Telescope Array experiment (TA) is the largest cosmic-ray detector in the Northern
hemisphere, located near the city of Delta, Utah, USA (39.30◦ North and 112.91◦ West, and at
∼1400m above sea level) [8]. The surface detector array (SD) consists of 507 plastic scintillators
of 3m2 area deployed in a square grid with a 1.2 km spacing. The total acceptance is about
700 km2. Additional surface detectors, designed to provide a fourfold increase in observation area,
collectively referred to a TA×4, have begun operation [9]. Fluorescence detector (FD) view the air
space above the SD. The FD measures directly the calorimetric energy of an air shower from the
energy deposited by particles in the shower during its longitudinal development [10].

The arrival direction of an UHECR is inferred as measured by the TA SD is evaluated from
the relative difference in arrival time of the shower front at each surface detector (which are time-
synchronized using GPS modules). The energy estimator of the TA SD is the particle density
measured at a distance of 800m from the air shower axis, called (800. The (800 parameter is
converted to the primary energy as a function of zenith angle based on a Monte Carlo simulation
using the CORSIKA software package [11]. The obtained energy is calibrated to the calorimetric
energy measured by the fluorescence detectors using a scaling factor of 1/1.27 [12]. The typical
resolution of the TA SD is 1.0◦ ∼ 1.5◦ in arrival direction and 10% ∼ 15% in primary energy [12],
and the systematic uncertainty in the energy scale is quoted at 21% [13].

1.2 Large-scale anisotropy search

Recently, the Pierre Auger Collaboration reported the observation of a significant large-scale
anisotropy in the arrival directions of cosmic rays above 8 EeV, indicating an obvious dipole
structure of 4.7% amplitude in a projection of the right ascension with a 5.2f significance [14].
An enhancement of the dipole amplitude above 4 EeV and results down to 0.03 EeV are also
reported [15, 16]. These results are consistent with an extragalactic origin of UHECRs. In the
Northen hemisphere, the Telescope Array Collaboration reported a result consistent both with an
isotropic source distribution, and with the dipole structure reported by Auger using 11 years TA
SD data[1].

In this proceedings, we report the large-scale cosmic-ray anisotropy search at the highest
energies and its energy dependences using 12 years TA SD data.

1In this research field, we define a small angular scale anisotropy as less than 5◦, intermediate scale as 10◦ to 35◦ and
large scale as > 40◦.
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Figure 1: Parameter comparisons between the measured distribution and expectation evaluated from the MC
simulations. Probabilities of the statistical tests using j2 test and Kolmogorov-Smirnov test are described on
the top of the figures.

2. Data-set and methodology

The TA SD data recorded over 12 years from May 2008 to May 2020 were used for a study of
the large-scale anisotropy. To apply the same cut with our earlier publication, we use an a priori
energy threshold of 8.8 EeV, equivalent to 8 EeV used by Auger, accounting for 10% energy scale
difference between the two experiments [17].

There were 6518 events above 8.8 EeV, with zenith angles less than 55◦ and passing the same
quality cuts used in the TA spectrum analysis [12]. In this data-set, TA SD is capable of measuring
UHECRs were injected in a declination band from −15◦ to 90◦. As the trigger efficiency of the TA
SD below 10EeV is less than 100%, the obtained right ascension distribution is compared with the
expected distribution produced an isotropic UHECR sky, and from a time-dependent Monte Carlo
(MC) simulation including actual calibration constants, live time and dead time of each surface
detector station, and TA SD trigger efficiencies.

Before investigating large-scale cosmic-ray anisotropy, consistencies of the parameter distribu-
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Figure 2: (a) Residual intensities of UHECRs with energies above 8.8 EeV observed with 12 years of TA
data as a function of the right ascension. The black curve shows the TA fitted dipole result and and the red
dashed curve represents the dipole reported by Auger. (b) Sky map of residual intensities between TA data
and an isotropic distribution shown in the Equatorial and the Galactic coordinates. The arrival directions are
oversampled with a 45◦ radius cylindrical function. The galactic plane (G.P.) and the super-galactic plane
(S.G.P.) are shown as thick and thin dotted curves, respectively. The galactic center (G.C.) is indicated by
the open square.

tions between observed data and MC simulation are first verified. Figure 1 shows distributions of
zenith angle, azimuth angle, declination and right ascension for the 12 years TA SD data compared
with expectations evaluated from the time-dependent MC simulation. In all four cases the data and
MC are in good agreement.

3. Result

Figure 2(a) shows the residual intensity as a function of right ascension between 12 years of
TA SD data and the isotropic expectation calculated from the time-dependent MC simulation. The
residuals are fitted to the form AU cos(G − qU), where AU is the amplitude of the dipole and qU

is the phase. The obtained dipole structure has an amplitude AU of 3.1±1.8% and a phase qU of
134◦ ± 34◦. The TA SD data points are also compared with (a) an isotropic distribution and (b)
the dipole structure reported by Auger. The latter has a 4.7% amplitude and a phase of 100◦. With
current statistics, the obtained TA SD result is consistent with an isotropic distribution. Since there
is no significant dipole structure, an upper limit is evaluated for a chance probability of 1% that a
fluctuation of an isotropic source distribution would yield an amplitude greater than the reference
limit. The obtained 99% confidence-level upper-limit on amplitude is 7.6% for TA data above
8.8 EeV.

Figure 2(b) shows the sky map of residual intensities with oversampling of 45◦ top-hat function
to discern the structure of the dipole components. Although no significant amplitude is found, the
direction of the limited dipole enhancement is far away from the Galactic center. This result would
be more indicative of an extragalactic source distribution than a galactic one. Furthermore, we
search for an energy dependence of the dipole components in four energy ranges above 4 EeV as
shown in Figure 3. There is no significant component of dipole structure in all energy ranges.
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(c) 8 EeV ≤ � < 16 EeV (d) 8 EeV ≤ � < 16 EeV
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(e) 16 EeV ≤ � < 32 EeV (f) 16 EeV ≤ � < 32 EeV
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(g) 32 EeV ≤ � (h) 32 EeV ≤ �

Figure 3: Preliminary results from 12 years of TA SD data of residual intensities vs right ascension (left)
and skymap (right) in four energy ranges; (a,b) 4 EeV ≤ � < 8 EeV, (c,d) 8 EeV ≤ � < 16 EeV, (e,f) 16 EeV
≤ � < 32 EeV and (g,h) 32 EeV ≤ � .
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Figure 4: Preliminary result of equatorial dipole amplitude and phase measured with Telescope Array exper-
iment from 12 years of data (black filled circles), compared to Auger reported result (red open squares) [16].
The phase toward the Galactic center (GC) is indicated as a dashed line.

Figure 4 shows the obtained preliminary result of amplitude and phase using 12 years TA SD data
compared to the Auger reported result [16].

None of the measured TA data amplitudes are significantly different from zero, but their best-fit
values appear to increase with energy, while the corresponding phases are all far from the Galactic
center. Table 1 is the summary of preliminary results and their corresponding upper limit on
amplitude with 99% confidence level.

� [EeV] �med [EeV] # AU [%] qU [◦] AUL
U [%]

8.8 ≤ � 13.0 6518 3.1+1.6−1.6 134 ± 34 7.6
4 ≤ � < 8 5.3 13361 1.8+1.2−1.0 202 ± 38 4.8
8 ≤ � < 16 10.3 5446 3.5+1.7−1.9 146 ± 33 8.3
16 ≤ � < 32 20.2 1623 3.6+3.2−2.7 189 ± 57 13.2
32 ≤ � 43.2 595 4.6+5.0−4.2 97 ± 70 20.7

Table 1: Summary of preliminary dipole search result of 12 years TA SD data. The energy range, median
energy, number of events, best-fit dipole amplitudes and phase angles, and 99% confidence upper limits of
AUL
U are tabulated.

4. Conclusion

We report the results of the search for dipole structure in the arrival direction of UHECR
using 12 years of TA SD data from the Northern sky and for possible energy dependence of the
amplitudes. There are no significant large-scale anisotropies with the current limited statistics. We
have evaluated a 99% confidence-level upper limit of AUL

U = 7.6% above 8.8 EeV on the amplitude
of a dipole structure in a projection of the right ascension. Although the tendency of amplitude and
phase of the dipole structure shows a similar one reported from Auger, much greater statistics from
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TA are required to distinguish the two hypotheses. Future data collection by TA and the on-going
upgrade of TA×4 will be essential for further studies.
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