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The autocorrelation analysis using the arrival direction of Ultra High Energy Cosmic Rays (UHE-
CRs) has been previously reported by the Telescope Array (TA) experiment. It is expected that
the autocorrelation function reflects the source distribution. We simulate the expected arrival
direction distribution of the cosmic rays using the catalogs of candidate sources. We take into
account random deflection in the magnetic fields, with the magnitude of deflection determined by
the charge and energy of the cosmic rays, coherence length and magnitude of the extragalactic
magnetic field (EGMF), and by distance to source. In addition, in order to compare with the
results of TA, we consider the TA exposure. We compare the autocorrelation of the arrival direc-
tions corresponding to different source catalogs with the isotropic distribution. We calculate the
autocorrelation function for each type of source candidates using this procedure. We will discuss
the ability of this method to identify the source type of UHECRs.
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1. Introduction

I am investigating the origin-dependence of the clustering of cosmic ray arrival directions
observed by the Telescope Array (TA) experiment. Since cosmic rays are charged, their direction of
motion is bent by the magnetic field in space and they lose their directionality. Therefore, the origin
of cosmic rays arriving at the earth has not been clarified yet, and it is considered to be an important
issue in the field of astrophysics. On the other hand, UHECRs which arrive at a frequency of about
one per 1 km2 per year, are less affected by magnetic fields and travel almost straight from their
origin. Therefore, the TA experiment aims to find a clue to the origin of UHECRs by observing
them with two types of detectors, Surface Detector (SD) and Fluorescence Detector (FD) , installed
in Utah, USA, since 2008 [1]. The TA experiment has so far captured signs of a high concentration
of UHECRs from a certain direction [2]. However, the frequency of the arrival of UHECRs to the
earth is very small, so we need to increase the statistics from long-term observations. In addition,
the TA × 4 experiment has partially started in 2019, enabling higher statistics observations [3].
Therefore, I decided to search for clues to the origin of the cosmic rays by using an analysis method
that does not depend on the observation statistics using the current observation data. First of all,
I focused on the clustering excess in the direction of arrival of the events observed by the TA
experiment, and assumed that the distribution of the origin is reflected in the result. This is because
if multiple cosmic ray emitting origins are isotropically distributed, we would expect to find no
clustering excess in the events observed on Earth. Therefore, in this analysis, we generate cosmic
ray events arriving at the Earth from a group of candidate origins by Monte Carlo (MC) simulations
and investigate their clustering excess. If the simulation results reproduce the results of previous
studies, we can identify or narrow down the origin group.

Figure 1: Detector configurationmap of the Telescope array (TA) experiment. The red circles are 507 surface
particle detectors (SD) spaced 1.2 km apart. The SDs are surrounded by three atmospheric fluorescence
telescopes (FD), indicated by blue circles. The northernmost FD is called Middle Drum (MD), and the
southern FD is called Black Rock Mesa (BR) and Long Ridge (LR). The TA experiment realizes a hybrid
observation of FD and SD. The yellow circles around MD indicate the TALE SD.

2. Autocorrelation Function

The clustering of CR events at a given angular scale appears in the autocorrelation function
of the events [4][5][6]. The autocorrelation function is determined by the excess of pairs of events
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separated by a given angular distance X as compared to a uniformly distributed set with the same
total number of events. The procedure is as follows: for a given separation angle k, we count the
number of pairs of data events that are separated by an angular distance X less than k. Next, we
generate a large number of uniformly distributed MC event sets that take into account TA exposure
with the same number of events as the real dataset. In each MC set we count pairs of events in
the same way as in the data,which gives the MC count for that set. For each value of k we then
determine the fraction of simulated sets where the number of pairs is greater than or equal to the
number of pairs in the data. This gives the P(k). When the value of P(k) is small, it means that
the number of pairs is excessive (not uniform) at a certain angular scale. The clustering of UHECR
events at E > 57EeV observed by the TA experiment (Fig. 2) shows the largest excess at distances
between the events of about 20◦ and 30◦ . I thought that this autocorrelation function would reflect
the distribution of the source. Therefore, we came up with the idea we may be able to identify the
source type from the characteristics of the autocorrelation function assuming the arrival direction
from source.

Figure 2: The results show the excess clustering of events at each energy threshold detected in the TA
experiment. The horizontal axis is the Separation angle k, and the vertical axis is the degree of clustering
excess in the direction of cosmic ray arrival, P(k). This result uses events obtained from 7 years of TA
observations: 2996 events for E > 10EeV, 210 events for E > 40EeV, and 83 events for E > 57EeV. It shows
that the clustering of events is isotropic when the energy threshold is low.

2.1 UHECR source candidates

We use the list of radio galaxies (RGs), which are the leading candidates for the origin of
UHECRs presented at ICRC2019 [7], to simulate cosmic rays arriving from them. The RGs list
contains 42 sources with five parameters: RA, Dec, P1, d, and type. where P1/Jy is radio flux of
the steep spectrum component of the source at 1GHz, d/Mpc represents the distance to the source.
There are five types of RGs in the list: FR-1, FR-2, SSRQ, BLU, and BLO. we simulate the cosmic
rays coming from these 42 radio galaxies, but it is unlikely that cosmic rays arrive with uniform
probability from 42 radio galaxies, we determined the fraction of events arriving from radio galaxies
based on the ratio of P1 to the cosmic ray flux FCR arriving at Earth from celestial objects.

FCR =
1

4cd2 (4cd2P1 )VL (1)
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where V! is the relationship between the radio flux and the power of the jet is experimentally
determined and is one of the parameters used to convert it to CR flux (for details, see [8]). In this
analysis, V! uses 0.675 regardless of type.

Figure 3: The left figure shows the relationship between the steep spectral component P1 at 1 GHz in the
RGs list and the cosmic ray flux FCR arriving at the Earth from the source obtained from equation 1 . The
left figure shows the normalized cosmic ray flux FCR for each source and the number of events arriving at
Earth from the source.

The left side of Fig. 3 shows the calculated P1 and cosmic ray flux FCR for each source in the
RGs list, and the right side of Fig. 3 shows the normalized cosmic ray flux FCR for each source
and the number of events arriving at Earth from the source. 3C134 in the list is the source from
which either protons or heavy nuclei of cosmic rays may originate and produce the most energetic
air shower events, but its location behind the dense molecular cloud of our galaxy obscures the
spectra needed to measure its redshift. The distance to 3C134 is estimated to be 30 ∼ 300 Mpc
[9][10], we assumed 30 Mpc (because 3C134 has a small radio flux, even assuming 300 Mpc does
not make much difference in the analysis results). From the figure, we can expect that Centaurus
A, which is located in the southern hemisphere, will arrive at Earth with a probability of about
40%, and Cygnus A, which is located in the northern hemisphere, with a probability of 10%. With
these probabilities, we predict the number of events that will arrive on Earth from each source.
The procedure for calculating the expected direction of arrival of cosmic rays from these sources is
described next.

2.2 Arrival direction of CRs expected from radio galaxies

Since a magnetic field of a certain strength exists spatially in space, ultra-high energy cosmic
rays are also bent in the propagation process. Therefore, it is necessary to consider the cumulative
deflection angle of cosmic rays for each composition due to the magnetic field. The cumulative
deflection of cosmic rays can be calculated theoretically from [11].
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(a) Proton (b) Iron

Figure 4: This figure shows a stochastic reproduction of the degree of deflection of cosmic ray protons and
iron arriving from Cygnus A using the equation 2 and the vMF function. The assumed magnetic fields are
10−7, 10−8, 10−9 and 10−10G. The color points indicate the degree of scattering for each assumed magnetic
field. The red points are for Cygnus A.

where z is the charge, d is the distance to the source, B is the magnetic field, _� is the coherence
length of the field, and E is the energy. If the EGMF is turbulent on a small scale, i.e., its coherence
length _� is smaller than the distance d to the source of the UHECR, it is expected to accumulate
a series of small deflections stochastically. However, there is a problem that the deflection of
UHECR cannot be determined in general, because the EGMF and coherence length are not yet
understood. Constraints on the EGMF and coherence length have been advanced by [12][13].
Therefore, in this analysis, we assume three types of EGMF, 10−8, 10−9, and 10−10, and assume that
the EGMF is 1 Mpc (controversial). Since cosmic rays do not always scatter at the same angle, but
scatter stochastically, the degree of scattering in the direction of arrival is reproduced using the von
Mises-Fisher (vMF) distribution, which is a two-dimensional Gaussian distribution on a sphere.

Fig. 4 shows the degree of scattering of cosmic ray proton and iron from Cygnus A in the RGs
list. This figure shows the degree of scattering of cosmic ray protons and iron when propagating
from Cygnus A (d = 250 Mpc) through magnetic fields 10−7, 10−8, 10−9 and 10−10G. It can be seen
that as the magnetic field becomes larger, the degree of scattering of cosmic rays also becomes more
extensive. In addition, the iron has a larger charge than the proton, so it scatters over a wider area
even when the magnetic field is small. Considering these assumptions, the directional distribution
of proton and iron arrivals of cosmic rays expected from the RGs list is shown below.

Fig. 5 shows the distribution of cosmic ray arrival directions expected from radio galaxies
assuming three types of magnetic fields and two types of compositions is shown in an equatorial
coordinate system. The black stars indicate the positions of the radio galaxies, and the light blue
points indicate the events expected from the radio galaxies. In order to compare the results with
those of the TA experiment, we generated 150 events, the equivalent of the 10 years observed in
the TA. The light blue points indicate the expected events from the radio galaxy, and these events
are scattered within the field of view of the TA. The method of simulating the events in the field
of view of the TA experiment is determined by the probability weighted by the exposure of the TA
experiment from [14]. It is assumed that cosmic ray events from radio galaxies located at higher
declination will be detected more frequently. A small number of events from outside the field of
view of the TA experiment are also detected. As the assumed magnetic field becomes smaller,
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(a) Proton, B = 10−8 (b) Proton, B = 10−9

(c) Proton, B = 10−10 (d) Iron, B = 10−8

(e) Iron, B = 10−9 (f) Iron, B = 10−10

Figure 5: The distribution of cosmic ray arrival directions expected from radio galaxies assuming three
types of magnetic fields and two types of compositions is shown in an equatorial coordinate system. The
black stars indicate the positions of the radio galaxies, and the light blue points indicate the events expected
from the radio galaxies.In order to compare the results with those of the TA experiment, we generated 150
events, the equivalent of the 10 years observed in the TA.

more events are distributed around the point source of the source. This means that the deflection of
cosmic rays from the source was small. Also, as the magnetic field increases, the deflection of the
cosmic rays from the source is larger, which indicates that the events are distributed over a wider
area. Comparing the results of the proton and iron simulations, the deflection of the cosmic rays is
larger for iron due to its larger charge, indicating that the events are more widely distributed even in
smaller magnetic fields.

The angular distance is calculated for each event in the arrival direction distribution generated
by the MC simulation (non-duplicated). Then, the number of pairs of angular distances within a
certain separation angle is counted, and nMC

corr is calculated. At the same time, the arrival direction
distribution is generated from an isotropic MC simulation that takes into account the TA exposures,
and nMC

iso is calculated. From the comparison of the number of pairs of separation angle between
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these MC and the isotropic MC, the autocorrelation Function is calculated. The calculation method
and results are shown below.

3. Results

Examine the correlation of arrival directions betweenMC events. The autocorrelation function
is calculated by comparing nMC

iso and nMC
corr. The distribution of P(k) is obtained by comparing the

102 set of MC distributions with the 105 set of isotropic MC distributions, since the distribution of
arrival directions expected from the RGs list varies from simulation to simulation even under the
same conditions. For each separation angle k, determine the median Pmed of the distribution and
the 68% region P±34% from it. Fig. 6 shows the results of the clustering excess of CR arriving from
radio galaxies obtained from the simulation.

Figure 6: The horizontal axis shows Separation angle k, and the vertical axis shows the excess of clustering
in the direction of cosmic ray arrival, P(k). 3 different magnetic field strengths are assumed, the upper one
for protons and the lower one for iron. The black line shows the median of P(k) obtained by comparing 105

isotropic MC simulations with 100 data sets generated from MC simulations of the same number of events
observed in the TA experiment. The red line is the statistical error of P(k) and shows the region 68% from
the median. The blue line shows the 95% confidence level.

The black line shows the median of P(k) obtained by comparing 105 isotropic MC simulations
with 100 data sets generated from MC simulations of the same number of events observed in the
TA experiment. The red line is the statistical error of P(k) and shows the region 68% from the
median. The blue line shows the 95% confidence interval. The results in Fig. 6, when assuming
three types of magnetic fields and two types of nuclei, each show a characteristic structure. When
the deflection is large, the distribution is almost isotropic. When the deflection is small, the change
in the distribution is very small. When the magnetic field is assumed to be 10−9, there is a large
difference between the proton and iron distributions. The scale of iron distribution is different only.
It is also below the 95% confidence level, indicating that it is consistent with isotropic distribution.
It can be said the iron distribution is almost isotropic due to the large deflection angle. Also, when
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the magnetic field is small, there is almost no difference in the 68% region. This means that the
arrival direction is mostly scattered around the source due to the small deflection angle. Finally,
show summary and discussion.

4. Summary and Discussion

We calculated the autocorrelation function of the expected CR arrival direction distribution
from the RGs list. The results in Fig. 6, when assuming three types of magnetic fields and two
types of nuclei, each show a characteristic structure. When the deflection is large, the distribution
is almost isotropic. When the deflection is small, the change in the distribution is very small. In
order to further confirm these results, we would like to determine the cosmic ray energy according
to the energy spectrum of the source and to consider the energy loss distance by GZK suppression
[5][15] for each particle species. We also hope to increase the number of data sets of isotropic MC
and MC direction of arrival distributions, so that We may be able to check the minimum value of
P(k). And we would like to use this analysis method for various new data sets of different source
types.
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