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1. Introduction

A precise understanding of the electromagnetic emissions produced by cosmic ray-induced
showers is critical for the design of sensitive cosmic ray radio experiments, as well as for the
analysis of the data these detectors produce. The fidelity of Monte Carlo-based simulations of such
showers and their radio signatures has improved enormously in recent years. These simulations
typically proceed in two stages: once the trajectories of the particles generating the shower have been
determined according to the shower model, commonly used tools, such as REAS [1] or ZHaireS
[2] proceed with the computation of the emitted radiation.

In both cases, this calculation is directly based on Maxwell’s equations, i.e. no approximations
are made. Typically, the trajectories of the particles participating in the shower are approximated
by line segments of sufficient granularity. The electric field E (or, alternatively, the vector potential
A) is known analytically for a particle travelling along a single such line segment, and so the total
field distribution can be computed by superimposing all contributions.

This electric field configuration is then propagated through the environment in which the
experiment is operating (which might be nontrivial, e.g. in the presence of varying atmospheric
conditions or ice-air interfaces). Finally, the electric field at the location of the detector is passed
through a simulation of the receiving antenna and the initial signal processing chain (such as linear
filtering) to give access to the electric signal that forms the input for the actual reconstruction and
subsequent data analysis.

In this contribution, we present an alternative approach for the computation of the signal,
which, in some sense, proceeds in the inverse order. In our formalism, the detector is imagined to
be the source of a particular electric field distribution that would ensue if a delta-like current was
applied between the terminals of its antenna. This position- and time-dependent “weighting field”
contains the full amount of information about the properties of the detector and its environment.
From the statement of reciprocity, a central feature of classical electrodynamics, it follows that
the signal produced in the detector by the shower can be computed very efficiently by convolving
the weighting field with the trajectories of the participating particles. This procedure holds true in
complete generality and is guaranteed to lead to consistent results for the induced signal, irrespective
of the details of the input trajectories.

This correspondence is derived formally in Section 2 starting from Maxwell’s equations.
Section 3 then applies this formalism to the situation discussed above. More information about the
method and other applications is available in Ref. [3].

2. A general signal theorem for Maxwell’s equation

We begin by introducing a fundamental property of classical electromagnetism, the concept of
reciprocity in Section 2.1. Section 2.2 then uses this result to derive a procedure for the computation
of the induced detector signal.

2.1 The concept of reciprocity

We phrase our discussion in the context of a linear, anisotropic material distribution, which is
general enough to encompass both the detector setup (antennas, cables, . . . ) as well as its environ-
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a) b)

Figure 1: a) An external current Je creates electric and magnetic fields E and H in a general linear material.
b) A current Je creates fields E and H in a geometry with transposed material properties.

ment (atmosphere, ice, . . . ). Such amaterial is characterised by a position- and frequency-dependent
permittivity matrix ε̂(x, ω), permeability matrix µ̂(x, ω) and conductivity matrix σ̂(x, ω). These
3 × 3 matrices determine the constitutive equations of the material,

D = ε̂E, B = µ̂H, J = σ̂E .

As illustrated in Fig. 1a, an externally impressed current density Je(x, ω) flowing through this
material creates electric and magnetic fields E(x, ω) and H(x, ω). These field distributions are
solutions of Maxwell’s equations. In the Fourier domain, where ∂

∂t ≡ iω, they read as follows,

∇ · ε̂E = ρ, ∇ · µ̂H = 0,

∇ × E = −iωµ̂H, ∇ × H = Je + σ̂E + iωε̂E .

We now consider the situation depicted in Fig. 1b, which is built around a different material
distribution: it is obtained by transposing the original material properties, i.e. replacing ε̂ → ε̂T ,
µ̂ → µ̂T and σ̂ → σ̂T , but keeping their dependence on position and frequency unchanged.
An external current density J

e impressed on this material distribution leads to fields E(x, ω) and
H(x, ω), which are again solutions of Maxwell’s equations. In the remainder of this section, we
formulate a precise relationship between these two situations, i.e. between E, H , Je on the one
hand, and E, H , Je on the other hand.

To find such a connection, wemake use of the product rule of calculus. Applied to two arbitrary
vector fields F and G, it states that

∇ · (F × G) = G · (∇ × F) − F · (∇ × G).

This implies that

∇ · (E × H) = H · (∇ × E) − E · (∇ × H)
= −E · Je − iωH · µ̂H − E · (σ̂T + iωε̂T )E,

and also

∇ · (E × H) = H · (∇ × E) − E · (∇ × H)
= −E · Je − iωH · µ̂TH − E · (σ̂ + iωε̂)E .
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a) b)

Figure 2: a) A moving point charge creates an electric field and therefore a voltage V ind between the points
x0 and x1. b) A line current Iw = Qwδ(t) generates the weighting field Ew(x, t).

Subtracting these two expressions, we get

∇ · (E × H − E × H) = E · Je − E · Je
.

Integrating this over an arbitrary volume V and applying Gauss’ theorem we have∫
∂V

dA · (E × H − E × H) =
∫
V

dV(E · Je − E · Je),

where dA is the surface element of the boundary of V , A = ∂V . We now take the limit where
the boundary is pushed to infinity, i.e. the volume V fills all of space. If the sources are compact,
i.e. contained in a bounded spatial region, the surface term on the left-hand side evaluates to zero.

We thus find ∫
dV E(x, ω) · Je(x, ω) =

∫
dV E(x, ω) · Je(x, ω) (1)

which is known as the Lorentz reciprocity theorem [4]. This is the relation we were setting out to
find: it will be central to the formulation of our signal theorem below.

2.2 A general signal theorem

We employ the Lorentz reciprocity relation to compute the signal produced in a general particle
detector by a moving charge. As illustrated in Fig. 2a, we consider a point charge q that moves
along an arbitrary trajectory xq(t). The current density created by this motion is given by

Je(x, t) = q Ûxq(t)δ[x − xq(t)].

We keep the material properties ε̂, µ̂ and σ̂ completely general, as before. We arrange the detector
such that it delivers its readout signal in the form of a voltageV ind(t)measured between the positions
x1 and x0 along a particular path S. We parametrise S as xs(s) with xs(s1) = x1 and xs(s0) = x0.
The signal in the frequency domain is then defined as

V ind(ω) :=
∫ x0

x1, S
d s · E(x, ω) =

∫ s0

s1

ds E(xs(s), ω) ·
dxs(s)

ds
.
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Note that the specification of the path S is important: in the general case where ∇ × E , 0, the
signal V ind is not independent of the chosen path. In a traditional particle detector the point x1
typically represents the signal electrode and the point x0 corresponds to the ground reference.

We now consider a second scenario, shown in Fig. 2b. The point charge is removed and instead
a line current Iw(ω) is set to flow from x0 to the detector terminal at x1 along the same path S, but
now embedded in the material distribution with transposed response matrices. The direction of the
current is chosen for consistency with conventional definitions of the signal polarity. This current
creates an electric field Ew (referred to as the “weighting field”), as determined by Maxwell’s
equations. Inserting the above expressions into the reciprocity relation in Eq. 1, we get

V ind(ω) = − 1
Iw(ω)

∫
dV Ew(x, ω) · Je(x, ω). (2)

The current Iw(ω) is completely arbitrary. If we take it to be independent of the frequency ω, it
corresponds to a delta-like current Iw(t) = Qwδ(t) in the time domain. We can then perform the
inverse Fourier transform of Eq. 2 and find the induced signal in the time domain as

V ind(t) = − q
Qw

∫ ∞

−∞
dt ′ Ew(xq(t ′), t − t ′) · Ûxq(t ′). (3)

This formula is the core of the following procedure for the computation of the signal. The
induced voltage V ind(t) measured along a path S from x1 to x0 that is induced by the movement
of a point charge q along a trajectory xq(t) through a material with parameters ε̂(x), µ̂(x), σ̂(x)
can be calculated in the following way. The charge q is removed and a delta current pulse Qwδ(t)
is placed along S flowing from x0 to x1 through a material with parameters ε̂(x)T , µ̂(x)T , σ̂(x)T .
The response to this current is the electric weighting field Ew(x, t). The detected voltage signal can
be calculated by convolving the weighting field with the velocity of the particle according to Eq. 3.

The above signal theorem is completely general, and only requires that the detector be made
from linear materials. Many practically relevant situations are indeed already described well by
symmetric material parameters. Nonlinear materials and materials exposed to fixed background
fields can be treated with the same formalism in excellent approximation, as explained in Ref. [3].

The weighting field Ew(x, t)makes no reference to the trajectory of the moving particle, but is
a sole property of the detector and its environment. It can be computed once and for all for a given
geometry, which is even possible analytically in simple cases. For realistic scenarios, standard
numerical solvers can be used instead, and the weighting field distribution Ew(x, t) saved to disk.
To obtain the induced signal, it is then sufficient to perform a simple (numerical) convolution with
the particle trajectory.

2.3 Signal processing

The raw detector signal V ind(t) is usually fed into an amplifier or a general linear signal
processing chain with transfer function F(ω), which delivers the (amplified and filtered) signal
Vout(t) at its output.

Eqs. 2 and 3 imply that the filtered signal can be computed directly, without first having to
compute the raw signal, or indeed the electric field at the position of the detector. Provided that the
weighting field Kw(x, ω) is now suitably constructed as the result of a current Iw(ω) = QwF(ω)
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a) b)

Figure 3: a) An infinitesimal electric dipole as particle detector. b) A simple analytic model of an extended
air shower whose radio emission is measured by the dipole.

applied to the readout electrodes in the way shown above, the filtered signal is given by the
convolution

Vout(t) = − q
Qw

∫ ∞

−∞
dt ′ Kw(xq(t ′), t − t ′) · Ûxq(t).

In practice, the bandwidth of the weighting field Kw is limited by F(ω). It is thus much easier to
obtain numerically than the unfiltered weighting field Ew .

3. Applications and use cases

In general, the characteristics of the raw detector signal V ind(t) depend in a complicated way
on the geometry of the antenna configuration and the electric field in the vicinity of the detector.
Below, we consider a simple application to illustrate our approach and to show its equivalence to
established methods.

3.1 Infinitesimal electric dipole: a simple detector

We can form an infinitesimal electric dipole—indeed one of the simplest conceivable radio
detectors—by separating the points x0 and x1 by an infinitesimal distance ds along the z-axis,
depicted in Fig. 3a. As shown in Ref. [3], the induced signal is directly proportional to the electric
field at the position of the antenna, i.e.V ind ∝ ds ·E. The infinitesimal electric dipole thus provides a
useful calculational vehicle to find the electric field at the location of a (more complicated) detector.

The weighting field Ew is the result of a line current applied between the terminals of the
antenna, as indicated by the red arrow in Fig. 3a. For this simple case, it can be computed
analytically. In polar coordinates, it reads

Eθ
w(r, θ) = −Qwds

4πε
sin θ
r3

[
Θ

(
t − r n

c

)
+

r n
c
δ
(
t − r n

c

)
+

(r n
c

)2
δ′

(
t − r n

c

)]
,

Er
w(r, θ) = −2

Qwds
4πε0

cos θ
r3

[
Θ

(
t − r n

c

)
+

r n
c
δ
(
t − r n

c

)]
, (4)

Eφ
w(r, θ) = 0,
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where Θ(x) is the Heaviside step function and δ′(x) is the distributional derivative of the Dirac
delta distribution. The quantity r labels the radial distance from the antenna, θ is the polar angle
measured from the z-axis, and φ is the azimuthal angle measured from the x-axis. The propagation
speed of the shock front is given by v = c/n where n =

(
c
√
µε

)−1 is the refractive index of the
material and c is the speed of light in vacuum.

3.2 Signal from a simple one-dimensional shower

To put this result to use, we consider a simple one-dimensional air shower in the situation
depicted in Figure 3b. We take a point charge to move along a linear trajectory xq(t) = b + v · t
with v = βc. To model the increasing negative charge excess in the shower front (electrons from
the surrounding air being scattered into the shower, and positrons annihilating), we take the point
charge q(t) to depend explicitly on time.

Performing the convolution of the weighting field in Eq. 4 with the shower trajectory allows
the electric field at the position of the dipole antenna to be determined. We find

E(t) = − ds
4πε

[
q(t)

|1 − nβ cos ϑ |3
1
r2

(
1 − n2β2

)
(x̂ + nβ)

]
tret

− ds
4πε

[
Ûq(t)

|1 − nβ cos ϑ |(1 − nβ cos ϑ)
n
rc
(nβ − (nβ · x̂)x̂)

]
tret

(5)

+
ds

4πε

∫ tret

−∞
dt ′ Ûq(t ′)

xq(t ′)
r3 ,

where ϑ is the angle between v and −x̂ and the retarded time tret is defined by tret = t − | |xq (tret) | |
c/n .

The first line in Eq. 5 is recognised as the Lorentz-boosted Coulomb field of the moving charge q(t).
The second line is proportional to Ûq(t) and corresponds to the Askaryan radiation. The obtained
expression is identical to the one computed in Ref. [5] with other methods. Finally, the third line
implements the Coulomb field of the positive ions that are left behind by the shower. The presence
of this contribution demonstrates that charge conservation is automatically imposed, and the electric
field computed with our method is manifestly consistent.

4. Conclusions

The method of weighting fields provides an appealing procedure for the calculation of electric
signals (or electric field) that are induced in a detector by a cosmic ray-induced shower. The
weighting field is the electric field distribution that is produced when the detector is (imagined to
be) operated as a transmission device. Convolving this field distribution with the trajectories of the
moving charges in the shower then produces a consistent solution of Maxwell’s equations.

For simple geometries, the weighting field can be computed analytically, which shows that our
method is mathematically equivalent to the algorithms employed in modernMonte Carlo simulation
tools. For realistic scenarios, the weighting field can be obtained through numerical solvers once
and for all, and then used for the computation of the signal from arbitrary showers. It encodes
the properties of the detector, its signal processing chain, as well as the environment in which it
operates in a well-defined way. This ensures a transparent design of the simulation chain, and
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allows to implement refinements in the model simply by updating the weighting field and without
modifications to the simulator code as such.
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