
P
o
S
(
I
C
R
C
2
0
2
1
)
1
6
0

ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE

Berlin |  Germany

ONLINE ICRC 2021
THE ASTROPARTICLE PHYSICS CONFERENCE

Berlin |  Germany

37th International 
Cosmic Ray Conference

12–23 July 2021

Local Turbulence and the Dipole Anisotropy of Galactic
Cosmic Rays

Yoann Genolini0,∗ and Markus Ahlers0

0Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen,
Blegdamsvej 17, 2100 Copenhagen, Denmark
E-mail: yoann.genolini@nbi.ku.dk, markus.ahlers@nbi.ku.dk

The dipole anisotropy of multi-TeV cosmic rays exhibits a strong energy dependence that is at odds
with the predictions of standard isotropic diffusion models. It has been argued that the observed
variation in amplitude and phase is a consequence of the global distribution of cosmic ray sources
in combination with anisotropic diffusion in our local environment. For a quantitative description
of this effect it is necessary to understand the complicated interplay of cosmic ray diffusion on local
and global scales. In this work we study the impact of isotropic magnetic turbulence realisations on
cosmic-ray propagation and anisotropy. We define a novel methodology that allows us to quantify
generic properties of local and global diffusion with the help of test-particle simulations. We
confirm the emergence of local anisotropic diffusion that leads to an alignment of the cosmic ray
dipole with the local magnetic field and a reduction of its amplitude in perpendicular directions.
We discuss the phenomenological consequences of these findings.

37th International Cosmic Ray Conference (ICRC 2021)
July 12th – 23rd, 2021
Online – Berlin, Germany

∗Presenter

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:yoann.genolini@nbi.ku.dk
mailto:markus.ahlers@nbi.ku.dk
https://pos.sissa.it/


P
o
S
(
I
C
R
C
2
0
2
1
)
1
6
0

Local Turbulence and the Dipole Anisotropy of Galactic Cosmic Rays Yoann Genolini

1. Introduction

Upon their arrival at Earth, cosmic rays (CRs) will have experienced repeated deflections
in magnetic fields since their departure in distant Galactic or extragalactic sources. The spatial
variation of these magnetic fields in terms of strength and orientation leads to a random walk of
charged particles. The transport of CRs in the presence of turbulentmagnetic fields can be effectively
described as a diffusive process [1]. The effect of random scattering in turbulent magnetic fields is
encapsulated in the diffusion tensor K. In standard diffusion theory, the first order correction to the
isotropic distribution of cosmic ray arrival direction is a small dipole anisotropy that scales with the
local CR gradient, ∇=, according to Fick’s law. The phase and strength of this dipole is expected
to be a combined effect of the relative motion of the solar system with respect to the frame where
CRs are isotropic [2], the distribution of cosmic ray sources [3–5], the characteristics of turbulent
magnetic fields as well as the strength and orientation of local regular magnetic fields [6–8].

In recent years many experiments achieved the necessary level of statistics to be able to find
anisotropies in cosmic ray arrival directions up to a level of 1 part in 1,000; see Refs. [9–12].
The left panel of Fig. 1 shows the dipole anisotropy data from various experiments in the TeV to
multi-PeV energy range. The data is shown in terms of the amplitude and right ascension (RA)
phase after the projection of the dipole vector onto the equatorial plane. One can notice that the
(projected) dipole exhibits a strong energy dependence in the multi-TeV to PeV energy range that
seems to be at odds with the predictions of standard isotropic diffusion models indicated by the
dashed lines in the plot. However, it has been argued that the observed variations in amplitude and
phase are a natural consequence of the global distribution of cosmic ray sources in combination
with anisotropic diffusion in our local environment [6–8]. These arguments are consistent with the
observed magnetic field in our local Galactic environment. However, for a quantitative description
of this effect it is necessary to understand the complicated interplay of cosmic ray diffusion on local
and global scales.

In these proceedings we study the effect of the imprint of the local realisation of magnetic
turbulence on the magnitude and orientation of cosmic ray dipole anisotropy. Our discussion will
be based on the formalism of [13] that allows to study the power of anisotropies in cosmic ray arrival
directions induced by a large scale cosmic ray gradient. While the size and orientation of the local
cosmic ray gradient is determined by source locations and spatially averaged diffusion properties,
the local anisotropy has to account for the gradual transition of cosmic ray propagation from the
local ballistic, over the intermediate laminar to the asymptotic diffusive regime.

2. Local Dipole Anisotropy

After their release in distant sources, cosmic rays experience deflections in magnetic fields
before arrival at Earth. In the following it is understood that the magnetic field, B = B0 + XB, has
a strong turbulent component XB on top of a constant background field B0. In the case of static
magnetic fields, the evolution of the CR phase-space density (PSD), 5 (C, r, p), follows Liouville’s
theorem, ¤5 (C, r, p) = 0.

After sufficiently long time-scales, the repeated scattering of cosmic rays inmagnetic turbulence
will have effectively wiped out most of its memory of its prior path. The only relevant quantities
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Figure 1: Left: Inferred phase and amplitude of the (equatorial) dipole anisotropy from recent measure-
ments [9–12]. Open symbols indicate upper limits and the dashed horizontal line shows the RA phase of
the Galactic Center. Right: Illustration of cosmic ray trajectories within ΔC = 2;2/2 prior to convergence
at the indicated location. The different panels assume rigidities of 10, 100, 103 and 104 TV from top-left
to bottom-right and an average magnetic field stength of 4 `G. The CR arrival directions are assumed to
lie within the GH-plane with 10 degrees spacing. The background shows the relative energy density of the
turbulence at I = 0.

are global properties of ensemble-averaged distributions. In standard diffusion theory, we can then
study the angular-integrated PSD = = =(C, r) ≡

∫
dp̂ 5 (C, r, p) that satisfies a diffusion equation,

mC= ' ∇(K∇=), where the diffusion tensor K can be expressed as

K8 9 = 181 9^ ‖ + (X8 9 − 181 9)^⊥ , (1)

where b is a unit vector in the direction of the regular magnetic field. The leading-order PSD can
then be written

4c 5 ' = − 3p̂K∇= , (2)

i.e., the local PSD has a dipole anisotropy in the presence of a local gradient ∇=.
It is important to realize that the dipole in Eq. (2) represents the anisotropy of the PSD averaged

over spatial scales larger than typical diffusion scales. If we want to compare this to the observed
dipole anisotropy of Fig. 1 we have to consider local effects of cosmic ray streaming. In the right
panel of Fig. 1 we illustrate the path of cosmic rays in purely turbulent magnetic fields prior to their
arrival at the observer. The different sets of trajectories all arrive within the GH-plane at equally
spaced angular distances. We show the case of four representative rigidities. The trajectories of
the top-left set of low-rigidity cosmic rays are tightly wound around the local magnetic field lines.
Effectively, CR streaming becomes locally anisotropic even in the absence of a constant magnetic
field [14]. This effect can not be accounted for by the structure of the diffusion tensor in Eq. (1).

3



P
o
S
(
I
C
R
C
2
0
2
1
)
1
6
0

Local Turbulence and the Dipole Anisotropy of Galactic Cosmic Rays Yoann Genolini

In [13] it was shown that the power spectrum of cosmic ray arrival direction induced by a
non-vanishing background gradient, ∇=, can be estimated by

�ℓ

4c
'
∫

dp̂1
4c

∫
dp̂2
4c

%ℓ (p̂1p̂2) lim
)→∞

ΔA18 (−))ΔA2 9 (−))
m8=m 9=

=2 , (3)

where Δr1(C) ≡ r1(C) − r1(0) and ¤r1(0) = p̂1, etc. The power of the dipole anisotropy, ℓ = 1, can
be expressed as

�1
4c
' S8 9

m8=m 9=

=2 (4)

where S ≡ K)K and diffusion matrix,

K8 9 ≡ lim
)→∞
〈?̂8 (0)ΔA 9 (−))〉Ω , (5)

where the average 〈·〉Ω is over the different orientation of initial particle trajectories, p̂(Ω). This
formulation of the diffusion tensor coincides with the TKG one [15–17] if one trades the angular
for an ensemble average over the magnetic configurations 〈·〉B. In general, we have the identity
〈K〉B = K.

In the absence of a background magnetic field, we expect that the ensemble-averaged diffusion
tensor approaches the isotropic form

K8 9 = X8 9^iso . (6)

The isotropic diffusion scale ^iso can be estimated either via the magnetic ensemble average of
Eq. (5) or, equivalently, via its integrated form,

^iso = lim
)→∞

〈〈Δr2(−))〉Ω〉B/6) . (7)

In these proceedings, however, we are interested in the effect of local anisotropies based on the
random orientation of large scale fluctuations. One can see from Eq. (4) that the ensemble-averaged
expectation value of the dipole power is determined by 〈S〉� ≠ K)K.

Since the matrix S is real and symmetric, we can parametrize it at any look-back time ) by its
three real eigenvalues and three Euler angles that indicate the coordinate system where S becomes
diagonal. By definition, the eigenvalues of S must be positive. Those modes of the local turbulence
with a wavelength much larger than the gyroradius of the cosmic ray, will appear effectively as
a local regular magnetic field direction, B̂, that split the hierarchy of eigenvalues of S into one
enhanced diffusion scale parallel to the magnetic field and two reduced diffusion scales. In general
there are thus three different eigenvalues. Assuming a plane wave structure for the local magnetic
field, we will therefore make the ansatz:

S8 9 ' ^2
L181 9 + ^

2
S1E8E 9 + ^

2
S2(X8 9 − 181 9 − E8E 9) , (8)

where b is now the unit vector pointing into the direction of the effective local magnetic field and
v a unit vector orthogonal to b, which accounts for the local anisotropy of perpendicular diffusion
in the volume-averaged realization of turbulence. Assuming that the direction of the cosmic ray
gradient is not correlated with the local magnetic field direction, we arrive at

〈�1〉B
4c

'
〈^2

L〉B + 〈^
2
S1〉B + 〈^

2
S2〉B

3
(∇=)2
=2 (9)

4



P
o
S
(
I
C
R
C
2
0
2
1
)
1
6
0

Local Turbulence and the Dipole Anisotropy of Galactic Cosmic Rays Yoann Genolini

In the following, we will show by simulations that this has two effects. On one hand, the expectation
value of the dipole power is enhanced compared to naive estimates using isotropic diffusion scale
and shows a different scaling with rigidity. On the other hand, the anisotropy of the local diffusion
tensor will lead to strong projection effects when determining the amplitude and phase of the dipole
anisotropy via Eq. (4).

3. Test-Particle Simulations

In the following, we will study the ensemble averages of K and S = K)K with the help of test-
particle simulations in synthetic magnetic fields. We consider a static magnetic field configurations
with a vanishing background field, B0 = 0, and 3D isotropic turbulence. The power spectrum of
the isotropic turbulence, P(:) = :26(:), is normalized by the root-mean-square magnetic field as

�2
rms ≡ 〈XB2〉 = 2

∫
d:P(:) . (10)

We assume aKolmogorov spectrumwithout helicity (f(:) = 0 and 6(:) ∝ :−11/3) ranging between
:min and :max. An important characteristic of the turbulence is the coherence length, which we
define as [18]. For :max � :min, the coherence length is then simply ;2 = !max/5.

In the following, we backtrack cosmic rays with rigidities from 1 TV to 10 PV through a
3D isotropic magnetic turbulence with root-mean-square field strength of 1 `G. The size of
:min = 2c/!max is set by the outer scale of the turbulence fixed at !max = 1.56 pc. In order to
achieve a large dynamical range of the turbulence between 1.56 pc and tens of AU, we set up the
turbulent magnetic field as a nested grid [19]. We use six nested grids of 1283 grid points each so
that it takes a relatively small memory space∼0.3 GB. In Fourier space, each grid covers a factor 8 in
dynamical range, while the factor 128/8=16 remaining is used for padding, and split the following:
a factor 4 to develop large wavelength modes and avoid artificial anisotropy and a factor 4 to densify
the modes in the dynamical range. With this set-up we cover a dynamical range of 2.6 × 105 with
more than 1.5 × 105 modes per decade, spaced linearly, and ensure that the gyroradius A6 of the
propagated particle is at least ten times larger than the smallest wavelength of the turbulence.

The particle trajectories are evaluated with a customized version of CRpropa [20] using the
pre-encoded Boris-Push algorithm. For the integration we adopt the following prescription for the
step size: Xstep = min(;2/5, 2cA6/10) that enables us to compute Kiso with an accuracy below 2%.
We sample over 150 different turbulent magnetic field configurations. For each field configuration
we uniformly sample #pix = 12288 CR orientations p̂8 (0) following the HEALPix parametrization
(=side = 32) [21], that we backtrack through the static magnetic field to find the initial position
r(−)). Assuming that trajectories are following a uniform tiling of the unit sphere (such as the
HEALPix parametrization), the diffusion matrix K can be estimated from

K8 9 = lim
)→∞

1
#pix

#pix∑
==1

?̂=8 (0)ΔA= 9 (−)) , (11)

where, as before, ?̂=8 denotes the component 8 of the vector p̂=, etc. The scales ^! and ^( can then
be derived from the ensemble-averaged eigenvalues of S = K)K.
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Due to the discrete sampling of #pix trajectories, the expression forK is affected by simulation
noise. We can estimate the noise level in each magnetic field configuration from the scrambled
diffusion tensor

K̃8 9 (/) = lim
)→∞

1
#pix

#pix∑
==1

?̂ b=8 (0)ΔA= 9 (−)) , (12)

where the vector / corresponds to a random permutation of the tuple (1, . . . , #pix). For individual
magnetic ensembles, the symmetric matrix S̃ = K̃) K̃ has eigenvectors that do not align with those
of the true S = K)K. However, the total sum of eigenvalues of S is invariant under random rotation.
This allows us to correct for a noise bias from the total sum eigenvalues 〈^2

L〉B + 〈^
2
S1〉B + 〈^

2
S2〉B =

Tr(S) − Tr(S̃).

4. Results

From the simulations we compute the time-dependent matrix S from which we extract the
three eigenvalues ^2

!
, ^2
(1 and ^2

(2. In the following we introduce three diffusion lengths _8 (with
8 ∈ [1, 2, 3]) ordered by decreasing value and defined as _ = 3^/2. In Fig. 2 we show the results
from our simulations with test particles of rigidity 10 TV propagating in a homogeneous turbulent
magnetic field with root-mean-square X� = 1 `G and outer-scale !max = 1.56 pc. The left panel
shows the evolution of the ensemble average over 150 magnetic field realizations of the three

eigenvalues _̂8 ≡ 〈_̂2
8
〉
1/2

with backtracking time is displayed with solid lines. We also show as
dotted black lines the three eigenvalues _iso

8
corresponding to the conventional diffusion tensor

^8 9 ()) = 〈ΔA8 (−))ΔA 9 (−))〉Ω/2) . The value of _iso corresponds to the average of these three
eigenvalues.

For small backtracking times, typically smaller than one gyration in the mean magnetic field
X�, the diffusion lengths increase linearly with time in accordance with a ballistic transport regime.
After a transition period, which is slightly longer for _iso

8
than for _̂8 , the values reach a plateau

corresponding to the convergence to the diffusive regime. We note that while the different _iso
8

all
converge toward the same value, the values of _̂8 differ significantly and span more than one order
of magnitude: they encode the anisotropy of the local diffusion tensor. We estimate the asymptotic
values and corresponding uncertainties by fitting _̂8 above the time ) 5 delineated by the vertical
gray line where the largest eigenvalue _̂1 flattens.

The fitting procedure and how we deal with the numerical noise will be detailed in [22]. The
best-fit value of the asymptotic value and the uncertainties are shown with as the data points in
the left panel of Fig. 2. The direct consequence of the eigenvalue hierarchy is a strong projection
effect of the cosmic-ray gradient onto the direction of largest eigenvalue (see Eq. 4), the latter being
aligned with the local magnetic field. Then a variation of the gradient orientation with the energy
implies that the CR dipole varies with the energy, as proposed in [8].

We perform this analysis for each decade from rigidity 1 TV to 10 PV. The evolution of the
ratio of the eigenvalues with energy is shown in the right panel of Fig. 2. We note that both ratios
_̂2/_̂1 and _̂3/F834ℎ0C_1 increase with particle rigidity (for a fixed coherence length), and saturate
to 1 above A6/;2 ' 1. As illustrated by the right panel of Fig. 1, this stems from the fact that for
large Larmor radii, CRs are less sensitive to the local structure of the magnetic field and probe
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Figure 2: Left : The evolution of the ensemble averages of _8 ≡ 〈_2
8
〉1/2 (with _2

8
eigenvalues of the matrix

S = K)K) as a function of backtracking time is displayed with a dotted red, green and blue lines. We shown
with a corresponding solid line or estimate _̂8 after noise correction. The vertical gray line indicates the
time above which we perform the estimation of the steady eigenvalues shown with dots with corresponding
uncertainties. For comparison we also show _8iso which correspond to the eigenvalues of the conventional
diffusion tensor K0 are shown with black dotted lines. Finally, the mean of these eigenvalues _iso (equals to
3 ^iso defined Eq. 7) is shown with a solid black line. This result is based on ensemble-averaged quantities
from a set of 150 magnetic field configurations with =sides = 32. Right : Evolution of the eigenvalues ratios
with the particle Lamor radius.

uncorrelated perturbations. The local diffusion tensor K becomes isotropic. Note however that
for small A6/;2 , the diffusion length ratios are small and could lead to a projection effect of order
O(30). Among the other rigidity dependent effects (direction of the CR gradient and the effective
local magnetic field), the evolution of the local diffusion lengths could provide an explanation for
the increase of the dipole amplitude from 200 TeV.

In the later we focus on the ensemble average over 150 magnetic field realisations. However
we are observing cosmic rays in a unique realisation, so it is important to assess the variations one
could expect from one realisation to another. A detailed assessment will be provided in [22], where
we show that the median of the distribution of the diffusion length behaves similarly to the mean.
Defining the quantiles of this distribution indicates that, if the CR gradient becomes parallel to the
direction of the smallest eigenvalue, the expected projection effect likely reaches O(100) for the
lower value A6/;2 studied.

5. Summary and conclusion

With the help of test-particle simulations we have devised a newmethodology to study the local
diffusion tensor K and its anisotropy. We have shown that in isotropic turbulence emerges a local
anisotropy of the phase-space density originating from the local structure of the magnetic field.
This local anisotropic diffusion naturally induces a projection effect of the local cosmic-ray gradient
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needed to explain the decrease with energy of the measured dipole amplitude and its alignment
with the local magnetic field. Furthermore, the evolution of the local diffusion tensor with the
particles energy show that it converges toward an isotropic tensor. This evolution might also drive
the increase of the dipole amplitude above 200 TeV. This seminal study opens a new avenue towards
the understanding the CR dipole anisotropy.
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