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The Dortmund Spectrum Estimation Algorithm (DSEA+) is a novel approach to unfolding by
translating deconvolution tasks into multinomial classification problems, which enables the use of
readily available tools. The algorithm is employable with several prebuilt classification models,
making it advantageous to other methods due to its generality, simplicity, and broadness. DSEA+,
primarily developed for the purpose of reconstructing energy spectra in the field of Cherenkov
astronomy, can be therefore applied to other areas of research. The estimation of statistical
uncertainties within DSEA mandates a special treatment of the algorithm’s iterative nature. Here,
we present a full derivation of statistical uncertainties in DSEA+ with probabilistic classification

applied to spectral reconstruction.
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1. Introduction

In astronomy and particle physics, the sought values are distorted through stochastic processes
involved in their detection. Often the value of interest can not be measured directly and is deduced
from related quantities. The distribution f(y) is said to be convoluted with the smearing matrix
A(x|y) resulting in measured distribution g(x):

g(x) = / AGIYFO)dy. (1)

Inferring the distribution f(y) is known as deconvolution, or often referred to as un folding in
astronomy and related studies. For non-square smearing matrices with high condition numbers,
solving the inverse problem is not straightforward. Ill-defined matrices lead to unstable solutions
with large uncertainties. Several approaches to unfolding exist, one of which is presented in this
work. Dortmund Spectrum Estimation Algorithm (DSEA) [1] solves the deconvolution task by
utilizing common machine learning classifiers. After discretizing the observable space, an arbitrary
classifier is trained on Monte Carlo data with known distributions. Initially, all events are weighted
uniformly. The trained model is now applied to the unlabeled set yielding the distribution of interest
to be

n
fi= Z Cij (2)

J
where ¢;; is the model’s confidence of event i belonging to reconstruction bin j. The events are
then reweighted with (2) and the process is repeated for a chosen number of iteration steps. DSEA
has several modes of handling step sizes in its search for the proper distribution, as well as ensuring
convergence. It can be used with any classifier, most commonly paired with probabilistic models
(as in this work) or with the Random Forest Classifier [2] due to shown superior performance.
An updated version with optimized regularization is called DSEA+. The iterative nature of this
algorithm mandates a revision of the classical approach to uncertainty calculation, which takes
uncertainty to be equal to the covariance matrix of the solution. This does not take into account
the number of iterations taken before the solution is reached, nor the uncertainty spanning from
the assumptions made in the process. Sections 2 and 3 give a detailed look into derivation, while
sections 4 and 5 present the implications and results of this approach.

2. DSEA+ probabilistic unfolding

In DSEA, the number of events in some energy bin i is reconstructed by summation of individual
events’ probabilities of belonging to the referred bin, corrected by its efficiency:

1
nf=>" —PGIE) ()
7 i

Probability of event j being correctly reconstructed in the energy bin i is given by Bayes’ theorem

oz(i|Ej)n?

PO = A i,

4)
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where a(i|E;) is the likelihood of event j given that energy is defined inside i, and n? the
prior assumption of what part of events belong to i. Therefore, the prior assumption is nor-
malized. Denominator in (4) is the normalization factor over all possible bins i = 1,2, ...M. Each
event has a different normalization factor. Probability is then normalized as well, while likelihood
can take any non-negative value.

Likelihood is ought to be evaluated for each measurable parameter in the experiment used in un-
folding. If the events j = 1,2, ...N are measured with a value p; of some measurable p and having
energy i (as constructed in the MC sample), the distribution of their likelihood can be inferred and
fitted to a Gaussian function. A Gaussian likelihood is described with the mean y; ;, and standard
deviation o7 ;,, for each measurable and each energy bin. We assume then that the likelihood of
some event j having a value p; can be sampled from the Gaussian distribution by

(pj - ,ui,p)2
2
20'1.’13

a(ilp)) = 12 exp(~ ) )

2710'1., »
Likelihood of event j is then taken to be the product of the events likelihoods in parameters by
introducing the naive asusumption per which the measurables are independent

P

a(ilEj) = a(ilpj)a(ilpj2)..alilpji) = l_[ a(ilpji) (6
Kk

where k = 1,2, ...P is the number of parameters used for unfolding.
Number of true events in bin i is

N : 0
1 a(i|E;)n;
= Y L, (7)

— €; Z%I a/(m|Ej)n9n

: N
= Z Uij (8)
>

where the expression can be written as an i X j matrix, referred to as the un folding matrix, with

M and N being the number of possible energies and measured events, respectively.

In the second step of DSEA, the prior assumption is replaced with the reconstructed distribution n;
that we just evaluated. The process is repeated, now yielding the result of second reconstruction to
be

N .
2) _ 1 oz(l|Ej)nl-
n? =3 ——5 )
€ 2om a(mlEj)ny,
The process is repeated for an arbitrary number of iterations, usually until convergence is reached.

We can define the reconstructed number of events in energy bin i after / steps

N . (-1 N
=) e = >ul o)
J ¥;

J

with ¢ being the normalization factor, indexed by the prior it depends on. It is straightforward to
see that the prior assumptions in steps 2 and larger are dependant on the likelihood, while only the
prior n® in the first step is independent as it is an arbitrary chosen constant vector.
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3. Error propagation

The effect of variables’ error on the uncertainty of function dependant on them is referred to
as error propagation, and is straightforward to calculate for linear functions. In nonlinear cases, as
(7) is, functions are linearized by using the Taylor expansion, approximately

af(x)
0
~ 11
f@) f®+2(% (11)
~f'+Jx (12

where (12) is the matrix notation, J being the Jacobian matrix

o9 .. 94

o1 on

J=: - (13)
O fm Ofm

The covariance matrix of f(x) due to propagation of error of x it depends on is then, in matrix
notation,

=T (14)

where XX is the covariance matrix of x.

Matrix U depends on likelihood and prior but we cannot quantitatively determine the covariance
of prior as it is an arbitrary chosen quantity. In subsequent iterations, the prior becomes dependant
on the likelihood. Since the reconstructed distribution changes, its covariance matrix changes
as well, and uncertainty has to be evaluated for the chosen number of iterations /, yielding the
covariance matrix of n to be

M N ) )

on; on

(l) 1 (o4 m
x! :E § S B L — 15
i,m da(k | E;) " *komda(o | E,) (13)

Subsequent iterations depend on previous reconstructions which carry the error from recon-
structions preceding them. We therefore expect additional terms in uncertainty of iterative unfolding
coming from the propagation of uncertainty through repetition of steps.

To evaluate (15), we seek an expression for the differential of (10) over likelihood. Several
special cases of this expression can be differed, namely the differential of n in the first step, in
iterative case, and differentiation over the supporting and non-supporting likelihoods (we say that
likelihood @ (i|E ;) supports the energy bin 7). For the simple case of the first step, the expression
(7) can be expanded to

N _i 1 aGEpn) N, 1 allEj)n? ~
;= - = - -
6 M a(mlEpn, e ¢
1 a(i|E1)n? 1 a(i|E2)n? 1 a(i|Ej)n? 1 cx(i|EN)n?

(16)

=— +— et — et —
€ Yo a(m|ED)nl), €& 330 a(m|Ex)n), € Y a(m|Ej)np, € Y a(m|En)nfy
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Knowing that
da(ilE;) ~ OallE;)  da(k|E,)

da(klE;)) ~ da(klE;))  da(k|E;)

and using the multiplication rule of derivation, all except one term in (16) can be dropped which

=0 (17)

gives

0

on; - 01/ 20 M
_ T GGIENR e (=0 = _U,. -k 18
aa(klEJ) a(ll _I)n[ El ( ‘10] nk) 1] (pj ( )

for non-supporting likelihoods, where we used (8) for the short-hand expression. For supporting
likelihoods, the result yields

Ui e+ alE e (o0 = 2 vy (10)
— =% +a(i ne - = -U;j—
da(ilE;) T T ’ ! e ¢
where the extra term comes from the dependency of both the numerator and denominator in (7) on
given likelihood.
However, subsequent iterations use a dependant prior which mandates a revised calculation.

(10) can be expanded as

o _ 1 a(i|Ejn!™" N1 aGE)n!Y
n

. + (20)
CasMomEpn( ) & e sM o (mlE,)nlD

where the j-th element has been extracted to showcase the special case of dependency on likelihood
of all three constituting parts. Recalling (17), (19) and using the chain and multiplication rules of
derivation, differentiation of n results in

(l 1) 1)
-1 -1 I-1 antt
Bngl) (nl( ))i:k +a(ilE; )6a(l|E ) a(i|E; )n( )e, ( ) 4 ZM a(m|E; )aar(lHE y

dar(k|Ej) ! (ei¢)?

. 6n€1) (1) ﬁn(l)
+§: a(llE”)aa(kE|Ei) a’(llEn)n Z a(mlEn)aa(krTEj) 21
1 (1 ’
n#j 619051) Ei((pn ))2

4. Implications

The obtained expression (21) can be regrouped as

(l 1}

<l> WD (00N N aGIE) g a(En) M a(m]Ej) 52
on U(l 1 +(n,- ) N 6(1/(k|E) L J) Ba(kIE) 22)
- -1 -1 I- I- :
8(1(k|E ) (pj Ei‘ﬁj X 7 619051 1) 61(90( 1))2

The first two terms in addition correspond to (18) and (19). This is the error of the recosntruction in
its first step. As already mentioned, the error in the first step spans only from the likelihood, as the
prior is an arbitrary choice. When unfolding enters its second iteration, classifier uses the previous
reconstruction as the prior, which now holds a statistical error of exactly as given in (18) and (19).
This propagation of error results in an additional term corresponding to the last part of (22). The
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dominant part is the second term under summation, which inflates the uncertainty in subsequent
steps. However, if the solution converges, the difference between n'? and n!=1 goes to zero with
rising number of iterations. This also reduces the last term in (22) implying that letting the number
of iterations to infinity will not lead to infinite error, as both the error and the solution converge.

For each energy i there are j likelihoods for j measurements. We treat them as i values in
Jj different events. Therefore, each event is a multivariate which can be described by a multino-
mial distribution. Although multinomials usually deal with probabilities, in this case the events
correspond to likelihoods. A multinomial M (n, p;...px) described by n number of trials, p event
probabilities for k mutually exclusive outcomes has a variance

Cov(X;, Xj)i=j = Var(X;) =npi(1 - p;) (23)

Cov(X;,Xj) = —npip; (24)

where the number of trials corresponds to the number of measured events in the experiment. Then,
the covariance matrix of n as given in (15) is

(9n,(f,)

an (a(k | E;) - 1) 25
@(0[En) )ogne; 0a(0] Ep)

M N
20) _ i ~ ,
Tom = 20 20 e By VK | Eate | En)

5. Results

For a toy Monte Carlo unfolded over only seven variables, the revised uncertainty shows a
better approach at capturing the error to the true distribution. To test the coverage of uncertainties,
we use the pull distribution defined as

s;i=220 (26)

i

where x; are individual event contributions, and n; is the reconstruction. When the given uncertainty
explains the data well, the pull distribution resembles a Gaussian, centered around 0 with a standard
deviation of 1. Since DSEA+ calculates the mean of contribution in its reconstruction, we expect
the mean of pull distribution to be exactly zero, but tend for a smaller variance in comparison to the
previous method. A lower spread of the pull distribution points to a a better explanation of data.
The results given in Table 1 show a clear reduction of the spread of the pull distribution o on the
revised error, as compared to the spread o on the classical error.

6. Conclusion

Unfolding is a long-standing problem in physics with many approaches currently used. A
precise calculation of statistical errors surrounding the reconstructed distribution is especially
important in deducing results and interpreting the nature of the problem. DSEA+ has several
modes of operation, each mandating an individually tailored inspection of error propagation. In
this work, an improved consideration of uncertainties in event spectrum reconstruction has been
given. Results show an advancement in comparison to the classical approach. As future work,
generalization of this approach to other models is planned.
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Figure 1: Comparison of classical and revised error on examples of DSEA+ from first up to the sixth iteration

on a seven variable dataset
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It. Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 Bin 9
u 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 o, 825897 387647 75.4029 112.5668 129.4308 198.7757 239.57 328.9727 423.5272
o  12.6447 9.2268 13.7231 23.3991 29.7588 36.9707 35.7847 38.2404 55.2100
u 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 o, 825897 387647 754029 112.5668 129.4308 198.7757 239.57 328.9727 423.5272
o 14.2800 9.3955 15.3905 27.5601 34.1803 41.2739 39.3227 41.68567 57.8545
u 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 o, 825897 38.7647 75.4029 112.5668 129.4308 198.7757 239.57 328.9727 423.5272
o 16.3765 9.5626 17.4658 33.5201 40.1131 46.6654 43.6167 45.8056 60.7356
u 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 o, 825897 38.7647 75.4029 112.5668 129.4308 198.7757 239.57 328.9727 423.5272
o 19.1433  9.7269 20.0848 42.7664 48.4621 53.5901 48.9287 50.8169 63.8809
u 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 o. 825897 387647 754029 112.5668 129.4308 198.7757 239.57 328.9727 423.5272
o 229170 9.8876 234130 59.0456 60.9852 62.7464 55.6503 57.0380 67.3209

Table 1: The mean and standard deviations of pull distributions considering classical and revised error

approach through iterations 2-6 on different bins in the reconstructed Toy Monte Carlo data
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