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1. Introduction

The radio technique is a cost-efficient way to obtain sensitivity to ultra-high energy (UHE)
neutrinos around energies of 1018 eV. A sparse array of radio detector stations installed close to
the surface of polar ice sheets allows instrumentation of huge volumes. The particle cascades
initiated by neutrino interactions in the ice generate radio emission via the Askaryan effect. All
neutrino interactions initiate a so-called hadronic shower stemming from the fragmentation of the
target nucleon. In addition, in electron neutrino charged-current interactions (a4-CC), the outgoing
electron (positron) initiates an additional electromagnetic shower along side the hadronic shower.
In this work we will exploit the differences between a4-CC and non-a4-CC interactions to obtain
flavor sensitivity.

We note that muon and tau leptons created by CC interactions of the respective neutrino also
initiate secondary showers due to stochastic energy losses or decay. These additional showers are
typically significantly displaced from the initial interaction but their signals might be picked up by
other radio detector stations. A detection of the initial and secondary interaction provide another
opportunity to measure the neutrino flavor which is studied in [1, 2].

With the construction of the discovery scale RNO-G detector in Greenland [3], the first
observation of an UHE neutrino might be possible in the next years. At the same time, an order-
of-magnitude more sensitive radio detector is currently being designed as part of the proposed
IceCube-Gen2 [4]. These experimental developments make the development of reconstruction
algorithms a priority. On the one hand, to be able to analyze the first detected neutrino, and
on the other hand, to optimize future detector designs in terms of reconstruction capabilities. In
this contribution we will use deep-learning techniques to extract the neutrino direction and flavor
directly from raw experimental data. It constitutes the first end-to-end reconstruction from radio
detector data.

The radio data is particularly suited for application of deep-learning methods. All information
on the neutrino is compressed into a few nano-seconds long radio flash and it is very challenging
to design algorithms ‘by-hand’ that extract all the information contained in the radio pulse. This is
also why no end-to-end reconstruction algorithm has been developed thus far, although important
progress has been made over the last years [5–8]. In contrast, deep-learning techniques naturally
consider all available information.

One of the largest challenges of using deep-learning is that large and realistic training datasets
are required. Their generation was enabled through the development of the NuRadioMC code over
the last years [9]. NuRadioMC allows for a fast simulation of arbitrary detector layouts. A new level
of precision in the calculation of the Askaryan radiation has been reached by combining a library of
microscopically simulated shower profiles with the ARZ model [10] that calculates the Askaryan
radiation from the shower profile with a precision of 3% compared to a microscopic simulation. In
particular, it enables a proper treatment of the LPM effect that reduces that cross section of high-
energy electrons (positrons) which manifests in electromagnetic showers as an overall elongation
of the shower profile and a charge excess profile characteristic of multiple sub-showers. We will
use this signature later to obtain flavor sensitivity as all non-a4-CC interactions are not impacted by
the LPM effect.
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Figure 1: (left) Schematic image of the shallow detector station design. (right) Example neutrino event.
The first four traces are from the LPDA antennas, while the last trace is from the dipole antenna. For each
trace, 512 samples are taken with a time interval of ΔC = 0.5 ns. The dipole channel clearly shows the DnR
signature of a time delayed direct and reflected-off-the-surface signal path.

2. Simulation of Radio Detector Data

In this work, we focus on a shallow station design as depicted in Fig. 1 left. This station design
is based on ARIANNA experience [11], foreseen for the ARIANNA-200 detector [12] as well as
part of the IceCube-Gen2 detector and, with slight variations, RNO-G [3, 4]. For the direction
and flavor reconstruction, the method presented here will utilize the 4 downward pointing LPDA
antennas as well as the dipole antenna. In Fig. 1 right, an example event is presented with a very
high signal-to-noise ratio (SNR) that is not representative for the data set.

The simulation of the radio emission fromneutrino eventswas done using theNuRadioMCcode
[9]. The framework simulates the neutrino interaction, the production of the Askaryan emission,
the propagation of the signal in ice, and the detector response. This yields a complete and realistic
model for what a neutrino interaction will look like in a radio detector. Training data sets with
a few million of triggered events were created with neutrino energies ranging from 1017 eV to
1019 eV, random incoming directions, random interaction vertices in a cylindrical volume around
the detector station located at the South Pole, i.e., the site of the proposed IceCube-Gen2 detector.
The trigger condition is a majority logic trigger on the four downward facing LPDAs where the
sensitivity was optimized by restricting the bandwidth in the trigger [13], and where the trigger
threshold was adjusted to give a low-level trigger rate of 100 Hz on thermal noise1. This can lead
to signal amplitudes of as low as 2 times the RMS noise over the full bandwidth of 80 MHz to
800 MHz.

Three data sets with different Askaryan emission models and interaction channels were created.
The first data set (Alvarez2009 had) with 8.3 × 106 events contains only hadronic showers (i.e. non-
a4-CC neutrino interactions) and the Askaryan emission was calculated using a frequency domain
parameteriztion from [15, 16]. The second data set (ARZ had) with 4.1 × 106 events also contains

1The low level trigger rate of 100 Hz can be reduced to manageable mHz rates by a real-time thermal noise rejection
on the radio detector station [14]
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only hadronic showers but this time the Askaryan emission is calculated based on a shower library
and the ARZ model as described earlier. The third data set (ARZ em + had) with 5 × 106 events
also uses the ARZ model but contains only a4-CC interactions that produce both a hadronic and
electromagnetic shower. The trigger probability increases quickly with neutrino energy and an
effort was made to simulate more low energy neutrinos to obtain a uniform energy distribution in
log10 (�) of triggered events, however, as we see later, the event distribution is still biased towards
higher energies.

3. Deep learning architecture

We use a neural network that is inspired by the VGG model [17] and consists of convolutional
blocks, followed by dense layers. We decided to use a convolutional neural network to identify
and characterize the signal pulses that are invariant in time (cf. Fig. 1). Because the relative time
differences of the signals between antennas carry information, we apply the convolution filters
independently to each antenna, i.e., the input shape is (5, 512, 1) where 5 are the 5 antennas, 512 is
the number of samples, and the last dimension is unity as we only available information from each
antennas is the voltage amplitude (unlike three color channels in the case of images). We use four
convolutional blocks that each have three convolutional layers with padding enabled, a filter size of
(1,5) and ReLU activation. In each convolutional block, the number of filters is doubled from 32 to
64 to 128. Each convolutional block ends with an average pooling layer of size 4, which reduces the
size of the trace by a factor of 4 in order to decrease the dimensionality of the traces. The network
is flattened and complemented by several dense layers.

The models developed for flavor and direction reconstruction are very similar, but it was found
that two slight variations proved to reconstruct each property with better accuracy. The network
used for the directional reconstruction uses 6 dense layers with a decreasing number of nodes of
2048, 2048, 1024, 512, 128. The final output is a 3-dimensional Cartesian coordinates pointing in
the neutrino direction. The network used for the flavor reconstruction uses just two dense layers
with 512 nodes each. The final output are two nodes with a softmax activation suitable for this
binary classification task. All networks are implemented using Keras/tensorflow. The optimizer
was Adam with a learning rate of 0.0001. A Nvidia Quadro RTX 6000 GPU was used to perform
the training.

4. Flavor Reconstruction

A radio detector is not directly sensitive to the neutrino flavor but differences in the event
signatures of a4-CC interactions compared to all other interaction channels can be used to measure
the flavor for a subset of the events. Interactions other than a4-CC induce a hadronic particle shower
stemming from the fragmentation of the target nucleon. For a4-CC interactions, the outgoing
electron (positron) initiates an additional electromagnetic shower that is effected by the LPM effect
along side the hadronic shower.

A convolutional neural network capable of classifying interactions based on said features was
developed. The only information available to the network are the voltage measurements by five
antennas (as depicted in Fig. 1), and of course the true event category during training. The total
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available dataset consisted of 8.0 · 106 simulated events where half of them are a4-CC interactions.
The other half are interactions the only produced a hadronic showers. The neural network was
trained using 95% of the data set. A fraction of 2.5% was used for validation and another 2.5% for
an independent test data set.

The main results are presented in the form of a confusion matrix of class-separated prediction
accuracies in Fig. 2 left. We find that almost 90% of non-a4-CC interactions are classified correctly
whereas 66% of a4-CC are classified correctly. The largest confusion stems from a4-CC interactions
that were classified as non-a4-CC. More insight can be gained by inspecting the accuracy as a
function of signal-to-noise ratio2 in four separate energy intervals of size Δ log �a = 0.5, which
is presented in Fig. 2 right. For a4-CC events we find that the accuracy increases with SNR and
energy, whereas the accuracy of non-a4-CC events shows almost no dependence on the neutrino
energy nor the SNR.

The discrepancy in accuracy between the two flavor classes is largely attributed to the LPM
effect. a4-CC interactions with neutrino energies in the upper end of the considered interval
produce Askaryan emissions which show clear signs of LPM elongation of the electromagnetic
shower. At the lower end of the neutrino energy interval (close to 1017 eV), LPM elongation of
the electromagnetic showers is less pronounced. In fact, the features of radio pulses produced by
a4-CC interactions at lower neutrino energies are more reminiscent of those the network learned to
associate with hadronic showers, i.e., non-a4-CC events. This is evident from the sub 50% accuracy
on a4-CC events for nearly all signal-to-noise ratios in the lowest energy bin of Fig. 2 right. As
previously mentioned, hadronic shower events are not subject to the LPM effect to the same extent.
The shape of the measured radio signals from non-a4-CC events thus remain relatively unchanged
across the entire considered energy range.

5. Direction Reconstruction

We used a similar approach to determine the neutrino direction from the measured voltage
traces. The neutrino direction has a complex dependence on the signal arrival direction, the signal
polarization, the angle underwhich the shower is observed and the distance to the neutrino interaction
vertex. Developing a traditional reconstruction algorithm is challenging but first promising results
have been obtained [7] by employing the forward-folding technique [6] but so far the reconstruction
is limited to hadronic showers. Here, we present the first end-to-end reconstruction where a CNN
learned the complex dependencies just based on the training data.

We quantify the goodness of the reconstruction by the space angle difference between the
predicted direction and the true direction, denoted here as ΔΨ. The objective function during the
training of the CNN is the mean absolute error (MAE) of ΔΨ. We chose MAE over the typically
used mean squared error (MSE) to reduce the influence of a rare number of events with poor
reconstruction. We are interested to obtain a good reconstruction of the majority of the events
and plan to develop quality cuts to filter out events with insufficient information for a direction
reconstruction. We train the CNN described in Sec. 3 on 75% of the data set and use 20% and 5%

2The signal-to-noise ratio is defined as the maximum signal amplitude in any of the five antennas after noise was
added divided by the noise RMS.
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Figure 2: (left) Confusion matrices showing the category-separated performance of the final network on a
test set consisting of 200,000 events split evenly between the categories. The main diagonal corresponds to
accurate predictions as can be inferred from the axis labels. The color bar is scaled according to absolute
number of events. (right) Predictive accuracy of the model on a4- CC events as a function of signal-to-noise
ratio (SNR) within the intervals marked by the horizontal bars. The data set is split into four equidistant
energy bins in log10 (�). The predictions were made on an independent test dataset unused during training
and validation.

for validation and test respectively. We perform the training and evaluation separately on the three
data sets.

The metric used for assessing the performance of the model is the 68 % quantile, denoted by
f68. This quantity will be a stable estimator that is also immune to rare outlier events with bad
reconstruction resolution. We present first the results for the data set of hadronic showers only that
were simulated using the ARZ emission model in Fig. 3. The figure also shows the value of f68
which is 4.1°. The expected distribution of this histogram is a Rayleigh distribution, given that
the Cartesian coordinates predicted by the model are normally distributed. The figure shows that a
Rayleigh distribution does not correspond well to the given distribution, indicated by the tail of the
histogram.

To gain more insides into what determines the accuracy in the angular reconstruction, the
dependence of f68 is shown as a function of the SNR and the neutrino energy in Fig. 4. A
clear trend can be seen that the resolution improves with increasing SNR which comes at no
surprise. More interestingly is the dependence on neutrino energy where an improved resolution
with increasing neutrino energy is observed. This behaviour can partly be due to a correlation with
neutrino energy and SNR. However, this correlation is not strong enough to explain the energy
dependence. Also at higher energies, many events are still close to the trigger threshold because
their interaction vertex is further away which compensates for the larger emitted signal strengths.
The more likely explanation for the energy dependence is an unequal distribution of the training
data set. As also shown in Fig. 4, the number of events also increases quickly with energy and
we see an anti-correlation between resolution and number of events per bin. An improvement in
the resolution of low energy events had little impact on the MSA due to the small event counts
in that bin. Our hypothesis is that we can increase the performance at low energies significantly
by providing more training data in this energy regime. Also other strategies such as weighting of
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Figure 3: (left) Space angle difference histogram of ARZ had data set. The curve is fitted to a Rayleigh
distribution. (right) The plot shows the 68 % interval value f68 as a function of the amount of events used
for training for the Alvarez2009 had data set.
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Figure 4: Values of f68 in binned neutrino energy intervals (left), and binned event SNR intervals (right).
The count of events in each bin is also shown as orange triangles and need to be read off on the right y-axis.

events might already help and will be explored in the future.
We also analyzed the two other data sets and found that we also obtain a good resolution for

the a4-CC data set. At neutrino energies below 3 × 1017 eV the performance is similar to the non-
a4-CC data set with the ARZ Askaryan model and at higher energies the angular resolution is about
one degree worse. This result underlines the strengths of a deep-learning approach: The network
learned to more complex dependencies in LPM effected showers and a resolution almost as good as
for the simpler hadronic case was obtained. Interestingly, the performance of the non-a4-CC data
set with the simpler Alvarez2009 Askaryan model lies between the two other data sets.

When training the neural network, the amount of training events used can play a large role in
the performance of the model. In Fig. 3 right, the dependence of f68 with respect to the amount of
training events used is presented using the Alvarez2009 had data set. The graph clearly shows an
increase in the performance as the amount of training events used is increased. It was empirically
found that a function of the following form f68 = 04

−1#events + 2 can describe the relation between
f68 and the amount of training data. Assuming that this function resembles the true dependence, a
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fit to the data can be used to estimate the performance on an even larger dataset.

6. Conclusions and Outlook

We presented the first end-to-end reconstruction of the direction and flavor of neutrinos mea-
sured with a shallow radio detector. We trained and optimized a deep neural network to extract the
neutrino direction and flavor directly from raw data. We find an angular resolution of a few degrees
with a strong energy dependence that is likely due to an unequal energy distribution of the training
data set. A comparison with a traditional reconstruction technique (that was restricted to hadronic
showers only) found an angular resolution of 3° with little energy dependence [7] which indicates
that the deep-learning reconstruction can be improved further.

The full advantage of using deep learning is visible in a good angular resolution also for a4-CC
interactions where the LPM effect leads to significant variations in the shower development and the
resulting radio signals. Traditional reconstruction techniques either ignored this interaction channel
or found a significant worsening in angular resolution. A deep neural network is capable of learning
these complex dependencies from the training data set and to still provide a good angular resolution
of a few degrees.

We exploited the differences between a4-CC and non-a4-CC interactions to obtain flavor
sensitivity. The network was able to identify 90% of non-a4-CC interactions correctly. The
accuracy of a4-CC identification is energy and SNR dependent and also reaches up to 90% for large
enough SNR and high neutrino energies where the LPM effect is strong enough.
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