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Costeffective in-ice radio detection of neutrinos above a few 10'° eV has been explored successfully
in pilot-arrays. A large radio detector is currently being constructed in Greenland with the potential
to measure the first cosmogenic neutrino, and an order-of-magnitude more sensitive detector is
being planned with IceCube-Gen2. We present the first end-to-end reconstruction of the neutrino
energy from radio detector data. NuRadioMC was used to create a large data set of 40 million
events of expected radio signals that are generated via the Askaryan effect following a neutrino
interaction in the ice for a broad range of neutrino energies between 100 PeV and 10 EeV. We
simulated the voltage traces that would be measured by the five antennas of a shallow detector
station in the presence of noise. We designed and trained a deep neural network to determine the
shower energy directly from the simulated experimental data and achieve a resolution better than a
factor of two (STD < 0.3 in log10(E)) which is below the irreducible uncertainty from inelasticity
fluctuations. We present the model architecture and study the dependence of the resolution on
event parameters. This method will enable Askaryan detectors to measure the neutrino energy.
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1. Introduction

The detection of ultra-high-energy (UHE) neutrinos is a key to solve the 100-year-old mystery
of the origin of cosmic rays and one of the crucial milestones for astroparticle physics [1]. The
only cost-efficient way to measure these UHE neutrinos above 30 PeV of energy is via a sparse
array of radio antenna stations installed, for instance, in the Artic or Antarctic ice [2-5]: A neutrino
interaction in the ice generates a few-nanoseconds long radio flash that can be detected from
kilometer-long distances. Because of the small flux, no UHE neutrino has been observed yet, but
the technology has already been shown to work reliably with small test-bed arrays. Much larger
detectors are being constructed at the moment and even larger arrays are proposed for the next
decade.

This work focuses on a shallow station design as shown in Fig. 1 that has been explored by the
ARIANNA test-bed detector on the Ross Ice Shelf and at the South Pole [5]. Each station consists
of 4 LPDA antennas installed at a depth of just a few meters below the snow surface, and 1 dipole
antenna installed at a depth of 10 m in a narrow borehole. These antennas observe the ice below
for neutrino interactions. The dipole antennas was added to help with the reconstruction of the
neutrino properties. At this depth, the antenna will observe two signals, one from a direct path
to the antenna, and another delayed signal from a reflection off the surface. The time difference
between these two signals provides information about the distance to the neutrino interaction which
is important to estimate the neutrino energy [6].

Shallow detector stations are part of the RNO-G array that is currently being constructed in
Greenland [7], they make up the proposed ARIANNA-200 detector [8, 9] which will consist of 200
autonomous radio detector stations installed on the Ross Ice Shelf in Antarctica, and are an integral
part of the plans for IceCube-Gen2 [10].

A missing piece for the success of radio-based detection of neutrinos is the reconstruction of
the neutrino properties from the detectable radio flashes. Despite several years of research, no
end-to-end reconstruction has been developed so far. This is largely due to the complexity of the
problem: All information of the neutrino is compressed in a few nanosecond long radio flash that is
observed in just a few antennas. The traditional approach is to extract single parameters, such as the
amplitude or the slope of the frequency spectrum, and correlate them with the neutrino properties
of interest (see [11] for an overview of the reconstruction strategies). This is a very time consuming
process and it often does not take into account all available information.

The development of the NuRadioMC code which precisely simulates the expected signals from
neutrinos [12] as well as the corresponding detector response [13], allows us to take a different
approach [14]: training deep-neural networks to extract the neutrino properties of interest directly
from the raw data. In this work we focus on the most challenging property, the neutrino energy.

2. Data set generation

We use the NuRadioMC code [12] to create a large data set of 39.3 million recorded neutrino
event which corresponds to a data volume of 772 GB. We simulate a shallow radio detector station
at the ARIANNA site on the Ross ice shelf, i.e., an ice shelf with a thickness of 576 m with an
average attenuation length of approx. 500 m and where the ice-water interface at the bottom of the
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Figure 1: Schematic illustration of the shallow radio detector station. The three upward facing LPDA
antennas are for cosmic-ray detection and are ignored in this work. Fig. from [8].

ice shelf reflects radio signals back up with high efficiency. We generate neutrino interactions with

fixed energies from 10'7 eV to 10%°

eV with a step size of 0.1 in the logarithm of the energy. The
neutrino interactions are distributed uniformly in the ice around the detector with random incoming
direction.

For this work we limit ourselves to the simulation of hadronic showers, i.e., neutral current
interactions of all neutrino flavors, and charged-current interactions of muon and tau neutrinos.
The electron created in electron neutrino charged-current interactions will, in addition, initiate an
electromagnetic (EM) shower. At high energies, the development of EM showers is effected by the
LPM effect which complicates the reconstruction of the shower properties. Reconstruction of EM
showers will be studied in a forthcoming publication.

The observed radio signals only depend on the shower properties. Therefore, we will train
the deep neural network to determine the energy of the hadronic shower which has a deterministic
relation to the observed signal. The amount of energy transferred from the neutrino into the hadronic
shower is a stochastic process and can be estimated from theory [6]. The stochastic process also
introduces a irreducible uncertainty on the conversion from hadronic shower energy back to the
neutrino energy which amounts to a factor of two. This provides a target resolution for the shower
energy.

We simulate the resulting radio signals in the five antennas of the shallow detector station by
convolving the electric-field pulses with the antenna response and we approximate the rest of the
signal chain with an 80—800 MHz bandpass filter. An event is recorded if the signal pulse crossed a
high and a low threshold of three times the RMS noise within 5 ns. At such a low trigger threshold,
noise fluctuations can fulfil the trigger condition at a non-negligible rate. Therefore, we make sure
that the signal before adding noise has at least an amplitude of two times the RMS noise.

The number of events per energy bin is adjusted such that the number of recorded events is
approximately the same in each energy bins. Especially at low energies, this requires the simulation
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Figure 2: Two examples of the training data set. The traces show the recorded voltages in the 5 antennas as
a function of time. The upper 4 panels are the signal in the 4 LPDAs, and the bottom panel shows the signal
in the dipole antenna. Left: example at particularly high signal-to-noise ratio, where the direct and reflected
pulse is clearly visible in the dipole antenna. Right: a more typical example at low signal-to-noise ratio.

of orders of magnitudes more events which puts a heavy burden on computing resources.

The training data consists of the recorded voltages as a function of time of the 5 antennas. We
simulated a length of the time trace of 256 ns with a time binning of 0.5 ns which results in 512
samples per antenna. The shape of one event is (5,512). Two examples are shown in Fig. 2.

3. Deep learning architecture

After some experimentation, we used a neural network that consists of five convolutional layers
followed by six fully connected layers (see Fig. 3 for an overview of the network structure). We
decided to use a convolutional neural network to identify and characterize the signal pulses that are
invariant in time (cf. Fig. 2). Because the relative time differences of the signals carry information,
we apply the convolution filters independently to each antenna, i.e., the input shape is (5, 512,
1) corresponding to 5 antennas and 512 samples. The last component is 1 as the only available
information from each antenna is the voltage amplitude (unlike three color channels in the case
of images). Each convolutional layer has 100 filters, a kernel of size (1, 10) and stride of size
(1, 2). The fully-connected layers have sizes of 2560, 2048, 1024, 256, 128. Each layer (both
fully-connected and convolutional) has a relu activation. We used Keras to implement this neural
network. The optimizer was Adam with a learning rate of 0.0001 and using the mean squared error
(MSE) of the logarithm of the shower energy as objective function. We used Sherpa [15] for further
hyperparmeter optimization.

We reserved 300,000 events for an independent test data set. We used 80% of the remaining
data (31.1 million events) for the training data set and 20% (7.8 million events) for the validation
data set. The training data set is so large that it does not fit into memory. To not slow down the
training process due to io and data preprocessing times, we developed a data pipeline based on the
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Figure 3: Overview of the network architecture. The tuples indicate the input and output dimensions of the
data.

tensorflow.data class that preloads and preprocesses the data on several cores. We used a Nvidia
Quadro RTX 6000 GPU to perform the training. We trained the network for 25 epochs after which
no further improvement in the validation loss was observed.

4. Results

We evaluated the performance of the DNN using an independent test data set of 100,000 events
and present the results in Fig. 4. The scatter plot shows a good correlation between the true and
predicted energy over almost 4 orders of magnitude. We quantify the resolution by making a
histogram of the logarithm of the difference of the true and predicted shower energy. Using the
logarithm leads to a symmetric distribution compared to if a linear scale was used. The standard
deviation (which corresponds to the square root of the MSE used during training) is 0.26 which
corresponds to a factor of 1.8 on a linear scale. The distribution shows non-Gaussian tails which
increases the standard deviation beyond the 68% interval of +0.23 and —0.22 which corresponds
to a factor of 1.7 on a linear scale. Thus, we achieved the target resolution of being better than the
inelasticity limit of a factor of two.

We inspected how the resolution depends on the event parameters. Unsurprisingly, the res-
olution improves with increasing signal-to-noise ratio. For signals at the trigger threshold, the
resolution is 0.34 and reduces to below 0.2 for high signal-to-noise ratios. More interestingly is
the shower energy resolution on the shower energy itself which is shown in Fig. 5. The resolution
initially improves up to an energy of 2 x 10'7 eV, then worsens towards 10'® ¢V and then improves
again towards higher energies. Naively we would expect an improvement of the resolution with
energy, because a higher shower energy leads on average also to larger signal-to-noise ratios. How-
ever, the Ross Ice Shelf has a special property that radio signals get reflected at the bottom of the ice
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Figure 4: (left) Scatter plot of predicted vs. true shower energy using the first 20,000 events of the test
data set. (right) Histogram of the difference of the logarithm of the predicted and true shower energy using
100,000 events of the test data set.
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Figure S: Energy dependence of the energy resolution. The resolution is calculated as the standard deviation
of 1og1y(Eue — Epredicted) Per bin of true energy. A value of 0.3 corresponds to a factor of two on a linear
scale, and a value of 0.2 corresponds to a 60% resolution non a linear scale.

shelf which is the likely reason for this behaviour. If the shower energy is large enough, the emitted
radio signal is large enough to propagate downwards to the bottom of the ice shelf, and back up
to the receivers. Around 10'8 eV is exactly the transition region where more and more events are
observed via a reflected trajectory.

The large amount of available training data also allowed us to test the performance of the DNN
for different training data sizes. As clearly visible in Fig. 6, the mean squared error decreases with
increasing training data size as expected. The plot also suggests that we could reach an even better
performance by further increasing the training data set.
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Figure 6: The performance of the DNN reconstruction as a function of the size of the training data set.

5. Conclusions

We presented the first end-to-end reconstruction of the neutrino energy from radio detector
data using a deep neural network (DNN). The only information available to the DNN was the raw
voltage output of the antenna receivers. The DNN achieved an average resolution of a factor of
1.8 in shower energy which is below the intrinsic uncertainty from inelasticity fluctuations. The
dependence on the size of the training data set suggests that an even better resolution can be achieved
with an increased training data set.

Although these are promising results, this work is just the beginning of exploiting deep learning
for event reconstruction of radio detector data. A critical aspect is the accuracy of the training data.
With the development of NuRadioMC and its ongoing improvements (see e.g. [16, 17]) a lot of
work has already been done but more work is needed to ensure the validity of the data set, i.e., that
it correctly resembles real data. We believe that it is also crucial to compare deep-learning methods
with traditional methods on an event-by-event basis to validate the performance such as the work
of [18]. We plan to extend the data set to also contain electron neutrinos, which will create both
electromagnetic and hadronic showers, further complicating the reconstruction. Furthermore, the
DNN needs to be robust against experimental uncertainties which we can test by creating test data
sets that are varied according to experimental uncertainties. And last, an event-by-event uncertainty
estimation is needed.

The work presented here also opens up new ways to optimize future detectors. Currently,
an optimization of reconstruction performance is often not possible as it takes too much time
to adapt traditional reconstruction techniques to changing detector layouts. With deep-learning-
based reconstruction, different detector designs can be quickly evaluated in terms of reconstruction
performance using only simulated data.
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