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1. Introduction

The CALorimetric Electron Telescope (CALET) has collected over 60 months of uninterrupted
data on the flux and spectrum of the Ultra-Heavy (UH) cosmic rays from Z=30 to 40. Using the
latest data provided from CALET’s UH trigger, this work presents a newly developed UH analysis
complementary to the ongoing analysis by fellow CALET collaborators. We detail temporal and
spatial correction algorithms using both the 26Fe and 14Si peaks to improve charge resolution in the
Z >= 30 region. Additionally, this work presents a new method for removing contamination from
non-relativistic/lower-Z nuclei using trajectory tracing to compute effective cutoff rigidities in place
of the previously used vertical Stoermer approximation. We show that replacing the approximated
cutoffs with numerically calculated effective cutoff rigidities, calculated using the IGRF13 and T05
(Tsyganenko 05) geomagnetic field models, leads to fewer events being removed from the dataset
while maintaining improved charge resolution for Z > 26. Furthermore, we introduce Tarle function
peak fitting to perform charge corrections needed as a result of any quenching effects. We show the
most recent CALET UH results incorporating these improvements in the analysis.

2. The CALET Instrument

Figure 1: CALET structure indicat-
ing the CALET Gamma-ray Burst Mon-
itor (CGBM), Advanced Stellar Compass
(ASC), and calorimeter (CAL).

CALET was launched in August 2015 to the Inter-
national Space Station (ISS) for the primary purpose of
directly measuring the cosmic-ray total electron spectrum
up to energies of tens of TeV. The CALET calorimeter
(CAL) [2], shown in Figure 1, has a depth of 30 radiation
lengths (-0) at normal incidence and includes three sepa-
rate sub-detectors. The Charge Detector (CHD) consists
of two layers of 14 plastic scintillating paddles and can
measure the charge of nuclei up to Z = 40. The Imaging
Calorimeter (IMC) contains 16 layers of 448 scintillat-
ing fibers each which provide accurate tracking for most
events. Most of the shower energy is deposited in the
Total Absorption Calorimeter (TASC), with 12 layers of
16 PWO logs that can contain electromagnetic showers
up to TeV energies.

For ultra-heavy cosmic ray observations CALET
uses a dedicated trigger mode that is active throughout the ISS orbit [1]. Standard trigger modes
require events pass through the TASC, limiting the field of view, but the UH trigger removes this
restriction and only requires that events pass through the CHD and top half of the IMC [1]. This
raises the geometric factor from ∼ 12002<2BA to ∼ 40002<2BA , and prevents UH event candidates
similar to the one shown in Figure 2 from being removed from the dataset.
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Figure 2: Ultra-heavy event candidate shown in the CALET event viewer. The calculated UH track is shown
by the orange line.

3. Data Analysis

3.1 Ultra-Heavy Analysis Dataset

To aid the UH data analysis a reduced high level analysis UH dataset was produced using 5 years
of the CALET Level 2 Pass 4.1 dataset from October 2015 to September 2020. Included for each
of the 1.8G108 events is the associated summary information, energy-deposit sums for each layer
of the instrument, orbital parameters of the ISS at the time of observation, UH track reconstruction
parameters, and individual energy deposits for detector elements on or near the calculated track.
The estimated charge of each event is calculated using the event’s 3�/3G and the Bethe equation,
which reduces to Equation 1 assuming the particle is minimum ionizing.

3�

3G
∝ I2 (1)

A selection is thenmade to the initial set of events requiring their reconstructed track’s incidence
angle be less than 60 degrees [3]. These high incidence angle events can have their charges over
estimated resulting in a reduction of charge resolution in the UH region. A charge consistency cut
[3] is applied to the remaining events removing events where the estimated charges in the x and y
layers of the CHD (CHDX amd CHDY) differ by greater than 1.5%. The final dataset used for this
analysis includes 5G107 events.

3.2 Charge Corrections

3.2.1 Time/Spatial Dependence

When calculating charge using the method described above, long-term changes in temperature
and PMT gain cause time dependent fluctuations that negatively impact charge resolution. To
address these variations, an example of which is shown in the left side of Figure 3, events are placed
in 1-day bins and fits performed to find the location of the 26Fe and 14Si peaks for each paddle of
both CHDX and CHDY. These peaks are then used to calculate linear correction parameters for
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each day of data. When the corrections are applied, each bin’s charge spectrum is linearly shifted so
that the new 26Fe and 14Si peak locations are equal to their mean values for the full 5-year dataset.

Further variation in charge, shown in the right of Figure 3, arises from light propagation effects
and non-uniformity in the CHD that both contribute to a spatial dependence in the light yield of the
detector. To account for this dependence, the time-corrected data is divided into 3.2 2< G 3.2 2<
bins in both the CHDX and CHDY. For each bin, the fitted 26Fe and 14Si peak locations are again
used to calculate the linear correction needed to shift each peak to its mean value for the entire
CHDX and CHDY respectively.

Figure 3: left: Location of the 26Fe peak for paddle 5 of both CHDX and CHDY as a function of time.
right: Location of the 26Fe peak for each position bin of the CHDX.

3.2.2 Quenching Correction

In organic scintillators, it is found that large deposits of energy that are spatially concentrated
will exhibit non-linear saturation of the scintillator response, or quenching. This results in under-
estimated charge assignments that worsens as / increases. Using a method derived by Tarle et al.,
it is possible to recover the true 3�/3G from the actual luminosity, 3!/3G, via

3!

3G
= K

(1 − �B)3�/3G
1 + �(1 − �B)3�/3G

+ �B
3�

3G
, (2)

where �B describes the fraction of electrons produced in the ionization escape between the saturated
core and unsaturated halo regions of the signal, and B and K are constants. Combining Equations
1 and 2, we get

3!

3G
= ) (/2) = �1/

2

1 + �2/2 + �3/
2. (3)

Inverting this result then lets us solve for the un-quenched 3�/3G directly from our measured
luminosity, 3!/3G, using

/2 =
1

2�2�3

[
( 3!
3G
�2 − �3 − �1) +

√
( 3!
3G
�2 − �3 − �1)2 + 4

3!

3G
�2�3

]
, (4)

4



P
o
S
(
I
C
R
C
2
0
2
1
)
0
6
9

Ultra-Heavy Cosmic Ray Analysis with CALET on the International Space Station A. W. Ficklin

where �1, �2, and �3 are fit constants. To calculate the necessary Tarle function parameters, we
performed a multi-peak fit for all nuclei from 6 to 28Ni and fit these directly with the Tarle function.
The result of applying this quenching correction is shown in Figure 4.

Figure 4: Quenching corrected CHDX charge spectra for time and position corrected UH events.

3.3 Charge Resolution Improvements

3.3.1 Stoermer Cutoff Rigidity

Figure 5: Charge corrected UH spectrum with no cut,
a cut at ' > 3 GV, and a cut at ' > 4 GV. Where R is
the vertical cutoff rigidity.

To achieve adequate charge resolution in
the UH (Z >= 30) region, a method was re-
quired for removing the primary source of con-
tamination, non-relativistic and lower Z nuclei
that are below minimum ionizing and conse-
quently have significantly increased 3�

3G
. Given

CALET’s orbit is deep within the Earth’s geo-
magnetic field and experiences a wide range of
cutoff rigidities, implementing a cut using geo-
magnetic cutoff rigiditywas the chosenmethod.
Non-relativistic nuclei below minimum ioniza-
tion have access to the instrument through a
smaller, lower range of rigidities than higher en-
ergy nuclei, so removing times where the cutoff
rigidity is in this range limits their inclusion in
the dataset.

Initially, Stoermer’s vertical cutoff rigidity
approximation [4], Equation 5, was used for de-
termining cutoffs whereΨ is magnetic latitude.
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'2 = 14.9 ∗ 2>B4(Ψ), (5)

Figure 5 shows the results of implementing a cut using this approximated cutoff, showing cut
thresholds of 3 GV and 4 GV. Although there is visible improvement in the charge resolution, the
loss of statistics in the UH region limits quickly becomes prohibitive to the analysis.

To refine the calculation of the cutoff rigidties, the vertical Stoermer approximationwas replaced
with its trajectory dependent equivalent [4]. Instead of assuming normal incidence, Equation 6 now
takes into account the incident particle’s zenith, q, and azimuth, \, angles, as well as its distance
from the magnetic dipole, A , when deriving the cutoff. A comparison between the computed cutoff
rigidties is shown in Figure 6, and shows significant divergence between the vertical and trajectory
dependent values.

'2 =
60
A2 ×

(
1 −

√
1 − 2>B(Ψ)2>B3(\)
2>B(Ψ)2>B(\)

)2

(6)

This divergence though appears primarily at times of high cutoff rigidity, and does not affect
events observed over much of the orbit.

3.3.2 Numerical Method for Calculating Cutoff

Figure 6: Comparison between trajectory dependent and vertical
Stoermer cutoff rigidities.

To improve on the Stoermer
approximation, a trajectory tracing
method developed by Smart and Shea
[5] was implemented to numerically
solve for effective cutoff rigidities on
an event by event basis. For each tra-
jectory, the method uses an adaptive
step size Runge-Kutta method to in-
tegrate the equations of motion for a
charged particle in a magnetic field,
stepping through the trajectory until
it is deemed successful or forbidden.
This is repeated for a range of rigid-
ity values for each event, resulting in
a spectrum of allowed and forbidden
rigidities. An example of this, shown
in Figure 7, shows all allowed rigidi-
ties in white and forbidden rigidities
in blue. Notable points are the upper
cutoff rigidity where the first forbid-
den trajectory occurs, and the lower rigidity where the last allowed rigidity occurs. The effective
cutoff rigidity is calculated using

'� = '! + ('* − '!) G #�>A18334=/#) >C0;, (7)
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Figure 7: Spectrum of allowed and forbidden trajectories for an example 26Fe event trajectory, with allowed
trajectories being white space, and forbidden trajectories being blue space.

where '! is the lower cutoff, '* is the upper cutoff, #�>A18334= is the number of forbidden
trajectories after '* , and #) >C0; is the total number of trajectories between '* and '! . This
effective rigidity is the value used for the calculated cutoff rigidity, as it takes into account the
effect of the penumbra (allowed trajectories interspersed amongst forbidden trajectories) and is a
more appropriate value when compared to the upper or lower cutoff. The effective cutoffs were
calculated for all events in the UH dataset using the IGRF13 and Tsyganenko 05 internal/external
geomagnetic field models. The resulting UH spectrum, Figure 8, incorporating all the corrections
discussed above, and using the effective cutoff rigidity cut, shows a clear improvement in charge
resolution in the UH region.

Figure 8: UH charge spectrum with effective cutoff rigidities > 4 GV.
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4. Conclusions

The analysis improvements described in thiswork have provided results consistentwith previous
CALET UH results, producing a UH spectrum with resolved peaks for evenly charged nuclei up
to Z=38. Using numerically computed effective cutoff rigidities to limit contamination in the UH
dataset has improved charge resolution in the UH region. Further refinements to the analysis,
including analysis presented by Zober et al. [6], along with increased statistics from the extended
CALET mission will continue to improve CALET UH results going forward.
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