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1. Introduction

Integrable models are crucial for modern theoretical and mathematical physics. Due to the
fact that different physical phenomena can have similar mathematical description, exactly solvable
models can be used in many different areas. One can see that when using these models, huge
amount of (both macroscopic and microscopic) physical phenomena can be described. Integrable
models with inverse square potential have been studied for few decades. Due to this fact they
are well studied and there are many important results about these systems. Namely the Calogero-
model has unique properties and due to that nowadays this is an important system in mathematical
physics. On the other hand projective spaces have also interesting properties . Due to the fact that
they are maximally symmetric spaces it is important to consider physical systems on these spaces.
Unfortunately these two branches of mathematical physics are disconnected now. Complex analogs
of Calogero model are not studied well and some attempts to construct complexification of Calogero-
like models haven’t succeeded yet. Possible applications of this work should be highlighted. Namely
in condensed matter physics models on complex projective spaces are strongly related with the
quantum Hall effect. In High energy physics their role cannot be overestimated. These systems
can be viewed as simplified toy models for field theoretical complicated models in high energy
research. Our particular example of Calogero model is an example of conformal mechanics. It is
well known that conformal symmetry has a crucial role in modern high energy research. In this
context supersymmetrization of these systems is also important. Moreover Calogero-like models
are strongly related with 𝐴𝑑𝑆2/𝐶𝐹𝑇1 correspondence [1]. Particularly four-dimensional Hall effect
can be related with the systems in 𝐶𝑃3 [2].

𝑁-dimensional mechanical system (system with N degrees of freedom) will be called, inte-
grable if it has N mutually commuting and functionally independent constants of motion[3, 4].
In addition to these constants of motion, the system can have additional ones. In that case we
will say that the system is superintegrable. Particularly if 𝑁-dimensional mechanical system has
2𝑁 − 1 functionally independent constants of motion it will be called maximally superintegrable.
In case the system has N+1 conserved quantities it is called minimally superintegrable. While
integrable models possess separation of variables in one coordinate system, superintegrability guar-
antees separation of variables in many coordinate systems. For example two-dimensional oscillator
is superintegrable, which allows us to separate variables in Cartesian and polar coordinates. In
classical mechanics maximal superintegrability guarantees the closeness of trajectories. Quantum
mechanically energy spectrum of integrable models depend on 𝑁 quantum numbers. If the sys-
tem has 𝐾 additional conserved quantities (superintegrable) energy spectrum depends on 𝑁 − 𝐾
quantum numbers. For maximal superintegrability we have that the energy spectrum contains only
one quantum number. So we can conclude that superintegrability leads to degeneracy of energy
spectrum in quantum level.

Smorodinsky-Winternitz model was introduced decades ago [5–7]. After the introduction
many articles were devoted to this model [8–15]. Model with inverse square potential on a sphere
was introduced by Rosochatius in XIX century. After this the system was rediscovered by other
authors [16, 17]. Many results discussed in this paper are also presented in our previous papers
[18, 19].

Moreover there was an interest on integrable models on complex and particularly on Kähler

2



P
o
S
(
R
e
g
i
o
2
0
2
0
)
0
2
0

Integrable models with inverse square potential in maximally symmetric Kähler manifolds Hovhannes
Shmavonyan

manifolds. Namely superintegrable oscillator on a complex projective space was introduced and it
was shown that inclusion of a constant magnetic field preserves all the symmetries [20, 21]. There
exists also a generalization of this model on quaternionic spaces [22].

Another important generalization of these models on a Kähler spaces is the supersymmetriza-
tion. It was noticed that Kähler structure allows to introduce 𝑁 = 4 Supersymmetry, and leads to
𝑆𝑈 (2|1) supersymmetry algebra[23–32].

Current paper is a review based on [18, 19], and is organized as follows. Firstly there is a brief
discussion on complex Euclidean and complex projective spaces, then we present𝐶𝑁 -Smorodinksy
Winternitz model. And finally we discuss 𝐶𝑃𝑁 -Rosochatius system.

2. 𝐶𝑁 and 𝐶𝑃𝑁 as Kähler manifolds

The metric of the N-dimensional complex Euclidean space is well known.

𝑑𝑠2 = 𝑑𝑧𝑑𝑧, 𝑔𝑎𝑏̄ = 𝛿𝑎𝑏̄ . (1)

It is easy to note the Kähler potential and the symplectic structure is as follows

𝐾 (𝑧, 𝑧) = 𝑧𝑧, 𝜔 = −𝑖𝑑𝑧 ∧ 𝑑𝑧, {𝑧𝑎, 𝑧𝑏}0 = 𝑖𝛿𝑎𝑏̄ (2)

will lead to this well known metric. All the components of Christoffel symbols and Riemann tensor
vanish. Finally we present the results for Killing potentials and corresponding Killing vector fields.

ℎ𝑎𝑏̄ = 𝑧𝑎𝑧𝑏, 𝑉𝑎𝑏̄ = −𝑖(𝑧𝑏𝜕𝑎 + 𝑧𝑎𝜕𝑏̄) (3)

ℎ+𝑎 = 𝑧𝑎, 𝑉−
𝑎 = −𝑖𝜕𝑎, ℎ−𝑎 = 𝑧𝑎, 𝑉+

𝑎 = −𝑖𝜕𝑎̄ (4)

𝑉𝑎𝑏̄ vector fields generate rotations, while 𝑉−
𝑎 and 𝑉+

𝑎 are the generators of translation. Although
ℎ𝑎𝑏̄, ℎ+𝑎 and ℎ−𝑎 are not real, one can take real combinations using these functions. The number of
real Killing potentials is 𝑁 (2𝑁 + 1), so as is mentioned 𝐶𝑁 is maximally symmetric space.

The 𝑁-dimensional complex projective space is a space of complex rays in the (𝑁 + 1)-
dimensional complex Euclidian space (𝐶𝑁+1,

∑𝑁
𝑖=0 𝑑𝑢

𝑖𝑑𝑢̄𝑖), with 𝑢𝑖 being homogeneous coordi-
nates of the complex projective space. Equivalently, it can be defined as the quotient 𝑆2𝑁+1/𝑈 (1),
where 𝑆2𝑁+1 is the (2𝑁 +1)-dimensional sphere embedded in𝐶𝑁+1 by the constraint

∑𝑁
𝑖=1 𝑢

𝑖𝑢̄𝑖 = 1.
One can solve the latter by introducing locally “inhomogeneous" coordinates 𝑧𝑎(𝑖)

𝑧𝑎(𝑖) =
𝑢𝑎

𝑢𝑖
, with 𝑎 ≠ 𝑖, 𝑢𝑖 ≠ 0. (5)

Hence, the full complex projective space can be covered by 𝑁 + 1 charts marked by the indices
𝑖 = 0, . . . , 𝑁 , with the following transition functions on the intersection of 𝑖-th and 𝑗-th charts:

𝑧𝑎(𝑖) =
𝑧𝑎( 𝑗)

𝑧𝑖( 𝑗)
. (6)

Let us endow 𝐶𝑁+1 with the canonical Poisson brackets {𝑢𝑖 , 𝑢̄ 𝑗} = 𝚤𝛿𝑖 𝑗 , and define, with respect to
them, the 𝑢(𝑁 + 1) algebra formed by the generators

ℎ𝑖 𝑗 = 𝑢̄
𝑖𝑢 𝑗 . (7)
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Reducing the manifold 𝐶𝑁+1 by the action of the𝑈 (1) group with the generator ℎ0 =
∑𝑁

𝑖=0 𝑢
𝑖𝑢̄𝑖 , we

arrive at the 𝑆𝑈 (𝑁 + 1)-invariant Kaḧler structure defined by the Fubini-Study metrics

𝑔𝑎𝑏̄𝑑𝑧
𝑎𝑑𝑧𝑏 =

𝜕2 log(1 + 𝑧𝑧)
𝜕𝑧𝑎𝜕𝑧𝑏

𝑑𝑧𝑎𝑑𝑧𝑏 =
𝑑𝑧𝑑𝑧

1 + 𝑧𝑧 −
(𝑧𝑑𝑧) (𝑧𝑑𝑧)
(1 + 𝑧𝑧)2 , 𝐾 = log(1 + 𝑧𝑧). (8)

This metrics is obviously invariant under the passing from one chart to another. Hence, we can
omit the indices marking charts and assume, without loss of generality, that we are dealing with
0-th chart, so that the indices 𝑎, 𝑏, 𝑐 run from 1 to 𝑁 .

Being Kähler manifold, the complex projective space is equipped with the Poisson brackets
{𝑧𝑎, 𝑧𝑏}0 = 𝚤𝑔𝑎𝑏̄, where 𝑔𝑎𝑏̄ = (1 + 𝑧𝑧) (𝛿𝑎𝑏̄ + 𝑧𝑎𝑧𝑏) is the inverse Fubini-Study metrics. The
𝑠𝑢(𝑁 + 1) isometry of 𝐶𝑃𝑁 is generated by the holomorphic Hamiltonian vector fields defined as
the following momentum maps (Killing potentials).

ℎ𝑎𝑏̄ =
𝑧𝑎𝑧𝑏

1 + 𝑧𝑧 , ℎ−𝑎 =
𝑧𝑎

1 + 𝑧𝑧 , ℎ+𝑎 =
𝑧𝑎

1 + 𝑧𝑧 (9)

Like for the Euclidean case the number of independent Killing vector fields indicates that this space
is again maximally superintegrable. Finally we can compute the components of Christoffel symbol
and Riemann tensor.

Γ𝑎
𝑏𝑐 = −

𝛿𝑎
𝑏
𝑧𝑐 + 𝛿𝑎𝑐 𝑧𝑏

1 + 𝑧𝑧 , 𝑅𝑎𝑏̄𝑐𝑑 = 𝑔𝑎𝑏̄𝑔𝑐𝑑 + 𝑔𝑐𝑏̄𝑔𝑎𝑑 , (10)

3. 𝐶𝑁 -Smorodinksy-Winternitz model

We can introduce SW-system which respects the inclusion of constant magnetic field as follows,

H =
∑︁
𝑎

𝐼𝑎, 𝐼𝑎 = 𝜋𝑎 𝜋̄𝑎 +
𝑔2
𝑎

𝑧𝑎𝑧𝑎
+ 𝜔2𝑧𝑎𝑧𝑎 , (11)

where 𝑧𝑎, 𝜋𝑎 are complex have the following non-zero Poisson brackets

{𝜋𝑎, 𝑧𝑏} = 𝛿𝑎𝑏, {𝜋̄𝑎, 𝑧𝑏} = 𝛿𝑎𝑏, {𝜋𝑎, 𝜋̄𝑏} = 𝚤𝐵𝛿𝑎𝑏 . (12)

It is easy to notice that the model can be viewed as a sum of 𝑁 two-dimensional singular oscillators
interacting with constant magnetic field perpendicular to the plane. We see that the Hamiltonians
of these two dimensional singular oscillators commute and they commute with 𝐶𝑁 -Smorodinksy
Winternitz Hamiltonian.

Every two dimensional singular oscillator has𝑈 (1) invariance and they are first order constant
of motions

𝐿𝑎𝑎̄ = 𝚤(𝜋𝑎𝑧𝑎 − 𝜋̄𝑎𝑧𝑎) − 𝐵𝑧𝑎𝑧𝑎 : {𝐿𝑎𝑎̄,H} = 0 (13)

𝐿𝑎𝑏̄ being generators of 𝑆𝑈 (𝑁) algebra are not symmetries of our model

𝐿𝑎𝑏̄ = 𝚤(𝜋𝑎𝑧𝑏 − 𝜋̄𝑏𝑧𝑎) − 𝐵𝑧𝑎𝑧𝑏 : {𝐿𝑎𝑏̄, 𝐿𝑐𝑑} = 𝑖𝛿𝑎𝑑𝐿𝑐𝑏̄ − 𝑖𝛿𝑐𝑏̄𝐿𝑐𝑑 . (14)

On the other hand they can be used to construct second order symmetry generators for 𝐶𝑁 -
Smorodinksy Winternitz model.
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𝐼𝑎𝑏 = 𝐿𝑎𝑏̄𝐿𝑏𝑎̄ +
(𝑔2

𝑎𝑧
𝑏𝑧𝑏

𝑧𝑎𝑧𝑎
+
𝑔2
𝑏
𝑧𝑎𝑧𝑎

𝑧𝑏𝑧𝑏

)
, {𝐼𝑎𝑏,H} = 0, 𝑎 ≠ 𝑏 (15)

It is easy to compute Poisson brackets between 𝐿𝑎𝑎̄ and other generators

{𝐿𝑎𝑎̄, 𝐼𝑏} = {𝐿𝑎𝑎̄, 𝐼𝑏𝑐} = {𝐿𝑎𝑎̄, 𝐿𝑏𝑏̄} = {𝐼𝑎, 𝐼𝑏} = 0 (16)

We find that 𝐿𝑎𝑎̄ commute with others. Other Poisson brackets can be also computed, but they are
highly non-trivial

{𝐼𝑎, 𝐼𝑏𝑐} = 𝛿𝑎𝑏𝑆𝑎𝑐 − 𝛿𝑎𝑐𝑆𝑎𝑏, {𝐼𝑎𝑏, 𝐼𝑐𝑑} = 𝛿𝑏𝑐𝑇𝑎𝑏𝑑 + 𝛿𝑎𝑐𝑇𝑏𝑐𝑑 − 𝛿𝑏𝑑𝑇𝑎𝑐𝑑 − 𝛿𝑎𝑑𝑇𝑎𝑏𝑐 , (17)

where

𝑆2
𝑎𝑏 = 4𝐼𝑎𝑏 𝐼𝑎 𝐼𝑏 − (𝐿𝑎𝑎̄ 𝐼𝑏 + 𝐿𝑏𝑏̄ 𝐼𝑎)2 − 4𝑔2

𝑎 𝐼
2
𝑏 − 4𝑔2

𝑏 𝐼
2
𝑎 − 4𝜔2𝐼𝑎𝑏 (𝐼𝑎𝑏 − 𝐿𝑎𝑎̄𝐿𝑏𝑏̄)

+ 4𝜔2𝑔2
𝑏𝐿

2
𝑎𝑎̄ + 4𝑔2

𝑎𝜔
2𝐿2

𝑏𝑏̄
+ 16𝑔2

𝑎𝑔
2
𝑏𝜔

2 − 2𝐵(𝐼𝑎𝑏 − 𝐿𝑎𝑎̄𝐿𝑏𝑏̄) (𝐿𝑎𝑎̄ 𝐼𝑏 + 𝐿𝑏𝑏̄ 𝐼𝑎)

− 𝐵2(𝐼𝑎𝑏 − 𝐿𝑎𝑎̄𝐿𝑏𝑏̄)2 + 4𝐵(𝑔2
𝑏 𝐼𝑎𝐿𝑎𝑎̄ + 𝑔2

𝑎 𝐼𝑏𝐿𝑏𝑏̄) + 4𝐵2𝑔2
𝑎𝑔

2
𝑏 (18)

𝑇2
𝑎𝑏𝑐 = 2(𝐼𝑎𝑏 − 𝐿𝑎𝑎̄𝐿𝑏𝑏̄) (𝐼𝑏𝑐 − 𝐿𝑏𝑏̄𝐿𝑐𝑐̄) (𝐼𝑎𝑐 − 𝐿𝑎𝑎̄𝐿𝑐𝑐̄) + 2𝐼𝑎𝑏 𝐼𝑎𝑐 𝐼𝑏𝑐 + 𝐿2

𝑎𝑎̄𝐿
2
𝑏𝑏̄
𝐿2
𝑐𝑐̄

− 4(𝑔2
𝑐 𝐼𝑎𝑏 (𝐼𝑎𝑏 − 𝐿𝑎𝑎̄𝐿𝑏𝑏̄) + 𝑔2

𝑎 𝐼𝑏𝑐 (𝐼𝑏𝑐 − 𝐿𝑏𝑏̄𝐿𝑐𝑐̄) + 𝑔2
𝑏 𝐼𝑎𝑐 (𝐼𝑎𝑐 − 𝐿𝑎𝑎̄𝐿𝑐𝑐̄))

− (𝐼2𝑏𝑐𝐿
2
𝑎𝑎̄ + 𝐼2𝑎𝑏𝐿

2
𝑐𝑐̄ + 𝐼2𝑎𝑐𝐿2

𝑏𝑏̄
) + 4𝑔2

𝑏𝑔
2
𝑐𝐿

2
𝑎𝑎̄ + 4𝑔2

𝑎𝑔
2
𝑐𝐿

2
𝑏𝑏̄

+ 4𝑔2
𝑎𝑔

2
𝑏𝐿

2
𝑐𝑐̄ + 16𝑔2

𝑎𝑔
2
𝑏𝑔

2
𝑐 (19)

Symmetry algebra can be modified and can be written in a simpler form, if we introduce the
following generators

𝑀𝑎𝑎 = 𝐿2
𝑎𝑎̄ + 4𝑔2

𝑎, 𝑀𝑎𝑏 = 𝐼𝑎𝑏 −
1
2
𝐿𝑎𝑎̄𝐿𝑏𝑏̄, 𝑀𝑎0 = 𝐼𝑎 −

𝐵

2
𝐿𝑎𝑎̄, 𝑀00 = 4𝜔2 + 𝐵2. (20)

Since 𝐿𝑎𝑎̄ commute with all other generators Poisson brackets of 𝑀 will exactly coincide with the
Poisson brackets of 𝐼𝑎𝑏 and 𝐼𝑎.

{𝑀𝑎𝑏, 𝑀𝑐𝑑} = 𝛿𝑏𝑐𝑇𝑎𝑏𝑑 +𝛿𝑎𝑐𝑇𝑏𝑐𝑑 −𝛿𝑏𝑑𝑇𝑎𝑐𝑑 −𝛿𝑎𝑑𝑇𝑎𝑏𝑐 , {𝑀𝑎0, 𝑀𝑎𝑏} = 𝛿𝑎𝑏𝑆𝑎𝑐 −𝛿𝑎𝑐𝑆𝑎𝑏 . (21)

where

𝑆2
𝑎𝑏 = 4𝑀𝑎𝑏𝑀𝑎0𝑀𝑏0 +

(
𝜔2 + 𝐵

2

4

)
(𝑀𝑎𝑎𝑀𝑏𝑏 − 4𝑀2

𝑎𝑏) − 𝑀
2
𝑏0𝑀𝑎𝑎 − 𝑀2

𝑎0𝑀𝑏𝑏 (22)

𝑇2
𝑎𝑏𝑐 = 4𝑀𝑎𝑏𝑀𝑏𝑐𝑀𝑎𝑐 − 𝑀2

𝑎𝑏𝑀𝑐𝑐 − 𝑀2
𝑎𝑐𝑀𝑏𝑏 − 𝑀2

𝑏𝑐𝑀𝑎𝑎 +
1
4
𝑀𝑎𝑎𝑀𝑏𝑏𝑀𝑐𝑐 (23)

Moreover we can introduce indices with capital letters, where they take values from 0 to N. Using
these notations we have

{𝑀𝐴𝐵, 𝑀𝐶𝐷} = 𝛿𝐵𝐶𝑅𝐴𝐵𝐷 + 𝛿𝐴𝐶𝑅𝐵𝐶𝐷 − 𝛿𝐵𝐷𝑅𝐴𝐶𝐷 − 𝛿𝐴𝐷𝑅𝐴𝐵𝐶 (24)

where

𝑅2
𝐴𝐵𝐶 = 4𝑀𝐴𝐵𝑀𝐵𝐶𝑀𝐴𝐶 − 𝑀2

𝐴𝐵𝑀𝐶𝐶 − 𝑀2
𝐴𝐶𝑀𝐵𝐵 − 𝑀2

𝐵𝐶𝑀𝐴𝐴 + 1
4
𝑀𝐴𝐴𝑀𝐵𝐵𝑀𝐶𝐶 (25)
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𝑅𝐴𝐵𝐶 are antisymmetric, whereas 𝑀𝐴𝐵 are symmetric.
We can present the result for the quantum solution. To solve the Schrödinger Equation we can

use the fact that the system is a sum of two dimensional Hamiltonians and separate the variables.
Moreover using diagonal elements of 𝑆𝑈 (𝑁) generators we can separate variables in each two
dimensional problem and obtain one dimensional equations. The final result for the wave functions
of two-dimensional system and the energy spectrum are as follows

𝜓(𝑧, 𝑧, 𝑛, 𝑚) =
𝐶𝑛,𝑚√

2𝜋
(
√︁
𝑧/𝑧)𝑚𝐹

(
− 𝑛,

√︂
𝑚2 + 4𝑔2

ℏ2 + 1,
2
√︃
𝜔2 + 𝐵2

4

ℏ
𝑧𝑧

)
× (26)

×
(2

√︃
𝜔2 + 𝐵2

4

ℏ
𝑧𝑧

)1/2
√︂
𝑚2+ 4𝑔2

ℏ2
𝑒−

2
√︂

𝜔2+ 𝐵2
4

ℏ
𝑧𝑧̄

𝐸 = ℏ

√︂
𝜔2 + 𝐵

2

4

(
2𝑛 + 1 +

√︂
𝑚2 + 4𝑔2

ℏ2

)
+ 𝐵ℏ𝑚

2
(27)

So the final solution can be found, since the wavefunction is the product of two two dimensional
wavefunctions, whereas the energy spectrum is the sum.

Ψ(𝑧, 𝑧) =
𝑁∏
𝑎=1

𝜓(𝑧𝑎, 𝑧𝑎, 𝑛𝑎, 𝑚𝑎) (28)

𝐸𝑡𝑜𝑡 =

𝑁∑︁
𝑎=1

𝐸𝑛𝑎 ,𝑚𝑎
= ℏ

√︂
𝜔2 + 𝐵

2

4

(
2𝑛 + 𝑁 +

𝑁∑︁
𝑎=1

√︄
𝑚2

𝑎 +
4𝑔2

𝑎

ℏ2

)
+ 𝐵ℏ

2

𝑁∑︁
𝑎=1

𝑚𝑎, (29)

𝑛 =

𝑁∑︁
𝑎=1

𝑛𝑎, 𝑛 = 0, 1, 2... 𝑚𝑎 = 0,±1,±2, ... (30)

We can notice that the energy spectrum of the𝐶𝑁 -Smorodinky-Winternitz system depends on 𝑁 +1
quantum numbers, namely 𝑛 and 𝑚𝑎 .

We can briefly discuss the number of conserved quantities. We have 𝑁 real functionally
independent constants of motion (𝐼𝑎). Moreover let us mention that 𝐼𝑎𝑏 are real, and although it has
𝑁 (𝑁 − 1)/2 components, the number of functionally independent constants of motion is 𝑁 − 1. In
addition to this, the complex system has 𝑁 real conserved quantities (𝐿𝑎𝑎̄). So the total number of
constants of motion is 3𝑁 − 1 and it is superintegrable (but not maximally superintegrable). Let us
remind that the spectrum of 𝐷-dimensional quantum mechanics with 𝐷 + 𝐾 independent integrals
of motion depends on 𝐷 − 𝐾 quantum numbers Specifically if 𝑁 = 1 the system is integrable. For
𝑁 = 2 the system is superintegrable, but it has only one additional constant of motion (minimally
superintegrable).

4. 𝐶𝑃𝑁 -Rosochatius system

𝐶𝑃𝑁 -Rosochatius system" can be defined by Hamiltonian

H𝑅𝑜𝑠 = 𝑔
𝑎𝑏̄𝜋𝑎 𝜋̄𝑏 + (1 + 𝑧𝑧)

(
𝜔2

0 +
𝑁∑︁
𝑎=1

𝜔2
𝑎

𝑧𝑎𝑧𝑎

)
−

𝑁∑︁
𝑖=0

𝜔2
𝑖 , (31)
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where 𝑔𝑎𝑏̄ = (1 + 𝑧𝑧) (𝛿𝑎𝑏̄ + 𝑧𝑎𝑧𝑏) is the inverse Fubini-Study metrics.
The symplectic structure is as follows

{𝜋𝑎, 𝑧𝑏} = 𝛿𝑏𝑎, {𝜋̄𝑎, 𝑧𝑏} = 𝛿𝑏̄𝑎̄, {𝜋𝑎, 𝜋̄𝑏} = 𝚤𝐵𝑔𝑎̄𝑏 (32)

The model has 𝑁 manifest (kinematical)𝑈 (1) symmetries with the generators

𝐽𝑎𝑎̄ = 𝚤𝜋𝑎𝑧
𝑎 − 𝚤𝜋̄𝑎𝑧𝑎 − 𝐵ℎ𝑎𝑎̄ : {𝐽𝑎𝑎̄,H} = 0, (33)

and hidden symmetries with the second-order generators 𝐼𝑖 𝑗 = (𝐼0𝑎, 𝐼𝑎𝑏) defined as

𝐼0𝑎 = 𝐽0𝑎𝐽0𝑎̄ + 𝜔2
0𝑧

𝑎𝑧𝑎 + 𝜔2
𝑎

𝑧𝑎𝑧𝑎
, 𝐼𝑎𝑏 = 𝐽𝑎𝑏̄𝐽𝑏𝑎̄ + 𝜔2

𝑎

𝑧𝑏𝑧𝑏

𝑧𝑎𝑧𝑎
+ 𝜔2

𝑏

𝑧𝑎𝑧𝑎

𝑧𝑏𝑧𝑏
: {𝐼𝑖 𝑗 ,H} = 0 . (34)

Here 𝐽𝑎𝑏̄ are 𝑆𝑈 (𝑁) algebra generators. Moreover together with 𝐽0𝑎 they form 𝑆𝑈 (𝑁 + 1) algebra.

𝐽𝑎𝑏̄ = 𝚤(𝑧𝑏𝜋𝑎 − 𝜋̄𝑏𝑧𝑎) − 𝐵ℎ𝑎𝑏̄, 𝐽0𝑎 = 𝜋𝑎 + 𝑧𝑎 (𝑧𝜋̄) + 𝚤𝐵ℎ−𝑎 : (35)
{𝐽𝑎̄𝑏, 𝐽𝑐̄𝑑} = 𝑖𝛿𝑎̄𝑑𝐽𝑏̄𝑐 − 𝑖𝛿𝑐̄𝑏𝐽𝑎̄𝑑 , {𝐽0𝑎, 𝐽𝑏} = −𝑖(𝐽𝑎𝑏̄ + (∑𝑁

𝑎=1 𝐽𝑎𝑎̄ + 𝐵)𝛿𝑎𝑏̄), {𝐽0𝑎, 𝐽𝑏𝑐̄} = 𝑖𝐽0𝑏𝛿𝑎𝑐̄

Again we can introduce new indices which take values from 0 to 𝑁 and they simplify our
formulae

𝐼𝑖 𝑗 = 𝐽𝑖 𝑗𝐽 𝑗𝑖 + 𝜔2
𝑖

𝑢 𝑗 𝑢̄ 𝑗

𝑢𝑖𝑢̄𝑖
+ 𝜔2

𝑗

𝑢𝑖𝑢̄𝑖

𝑢 𝑗 𝑢̄ 𝑗
. (36)

In this notation the relevant symmetry algebra is given by the following brackets

{𝐽𝑎𝑎̄, 𝐼𝑖 𝑗} = 0, {𝐼𝑖 𝑗 , 𝐼𝑘𝑙} = 𝛿 𝑗𝑘𝑇𝑖 𝑗𝑙 + 𝛿𝑖𝑘𝑇𝑗𝑘𝑙 − 𝛿 𝑗𝑙𝑇𝑖𝑘𝑙 − 𝛿𝑖𝑙𝑇𝑖 𝑗𝑘 , (37)

where

(𝑇𝑖 𝑗𝑘)2 = 2(𝐼𝑖 𝑗 − 𝐽𝑖𝑖𝐽 𝑗 𝑗) (𝐼 𝑗𝑘 − 𝐽 𝑗 𝑗𝐽𝑘 𝑘̄) (𝐼𝑖𝑘 − 𝐽𝑖𝑖𝐽𝑘 𝑘̄) + 2𝐼𝑖 𝑗 𝐼𝑖𝑘 𝐼 𝑗𝑘 + 𝐽2
𝑖𝑖
𝐽2
𝑗 𝑗
𝐽2
𝑘 𝑘̄

− 4(𝜔2
𝑘 𝐼𝑖 𝑗 (𝐼𝑖 𝑗 − 𝐽𝑖𝑖𝐽 𝑗 𝑗) + 𝜔

2
𝑖 𝐼 𝑗𝑘 (𝐼 𝑗𝑘 − 𝐽 𝑗 𝑗𝐽𝑘 𝑘̄) + 𝜔2

𝑗 𝐼𝑖𝑘 (𝐼𝑖𝑘 − 𝐽𝑖𝑖𝐽𝑘 𝑘̄))

+ 4𝜔2
𝑗𝜔

2
𝑘𝐽

2
𝑖𝑖
+ 4𝜔2

𝑖𝜔
2
𝑘𝐽

2
𝑗 𝑗
+ 4𝜔2

𝑖𝜔
2
𝑗𝐽

2
𝑘 𝑘̄

+ 16𝜔2
𝑖𝜔

2
𝑗𝜔

2
𝑘 − (𝐼2𝑗𝑘𝐽

2
𝑖𝑖
+ 𝐼2𝑖 𝑗𝐽2

𝑘 𝑘̄
+ 𝐼2𝑖𝑘𝐽

2
𝑗 𝑗
) (38)

We also provide the energy spectrum of the quantized model

𝐸𝑛, {𝑚𝑎 } =
ℏ2

4

(
2𝑛 + 𝑁 +

√√√
(𝐵/ℏ +

𝑁∑︁
𝑎=1

𝑚𝑎)2 + 4𝜔2
0 +

𝑁∑︁
𝑎=1

√︃
4𝜔2

𝑎 + 𝑚2
𝑎

)2

−

− 𝐵2 + ℏ2𝑁2

4
− ℏ2

𝑁∑︁
𝑖=0

𝜔2
𝑖 , (39)

where 𝑛 =
∑𝑁

𝑎=1 𝑛𝑎 = 0, 1, . . . and 𝑚𝑎 = 0,±1,±2, ...
Thus the spectrum of quantum 𝐶𝑃𝑁 -Rosochatius system depends on 𝑁 + 1 quantum numbers.

This is in full agreement with the fact that this system has 3𝑁−1 functionally independent constants
of motion. So we have the same number of functionally independent constants of motion as for the
𝐶𝑁 -Smorodinksy-Winternitz model.
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