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We find all analytic SU(2) Yang–Mills solutions on de Sitter space by reducing the field equations
to Newton’s equation for a particle in a particular 3d potential and solving the latter in a special
case. In contrast, Maxwell’s equations on de Sitter space can be solved in generality, by separating
them in hysperspherical coordinates. Employing a well-known conformal map between (half
of) de Sitter space and (the future half of) Minkowski space, the Maxwell solutions are mapped
to a complete basis of rational electromagnetic knot configurations. We discuss some of their
properties and illustrate the construction method with two nontrivial examples given by rational
functions of increasing complexity. The material is partly based on [1, 2].
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Electromagnetic knots from de Sitter space Olaf Lechtenfeld

1. Description of de Sitter space

Four-dimensional de Sitter space is a one-sheeted hyperboloid (of radius `) inR1,4 3 {Z0, Z1, . . . , Z4}

given by
− Z2

0 + Z2
1 + Z2

2 + Z2
3 + Z2

4 = `2 . (1)

Constant Z0 slices are 3-spheres of varying radius, yielding a parametrization of dS4 3 {τ, ωA} as

Z0 = −` cot τ and ZA =
`

sin τ
ωA for A = 1, . . . , 4

with τ ∈ I := (0, π) and ωAωA = 1 .
(2)

The details of the embedding ωA : (χ, θ, φ) 3 S3 ↪→ R4 are irrelevant. The Minkowski metric

ds2 = −dZ2
0 + dZ2

1 + dZ2
2 + dZ2

3 + dZ2
4 (3)

induces on dS4 the metric

ds2 =
`2

sin2τ

(
−dτ2 + dΩ2

3
)

with dΩ2
3 for S3 , (4)

showing that dS4 is conformally equivalent to a finite cylinder I × S3.

2. Reduction of Yang–Mills to matrix equations

We wish to find solutions to the Yang–Mills (and Maxwell) equations on de Sitter space. Due to
their conformal invariance in four spacetime dimensions, we may also study the problem on the
finite Minkowskian cylinder I × S3.

The gauge potential taking values in a Lie algebra g can always be chosen as

A = Xa(τ, ω) ea on I × S3 (5)

where Xa ∈ g, and {ea, a = 1, 2, 3} is a basis of left-invariant one-forms on S3 ' SU(2), with

dea + εabc eb∧ec = 0 and eaea = dΩ2
3 . (6)

There is no dτ component because we picked the temporal gauge Aτ = 0. In terms of the S3

coordinates (a, i, j, k = 1, 2, 3 and B,C = 1, 2, 3, 4) these one-forms can be constructed as

ea = −ηaBC ωB dωC where ηijk = ε
i
jk and ηij4 = −η

i
4j = δ

i
j . (7)

Dual to the ea are the left-invariant vector fields

Ra = −η
a
BC ωB

∂

∂ωC
⇒ [Ra, Rb] = 2 εabc Rc (8)

generating the right multiplication on SU(2), so that an arbitrary function Φ on S3 obeys

dΦ(ω) = ea RaΦ(ω) . (9)
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The full SO(4) isometry group of S3 is generated by left-invariant Ra and right-invariant La.
In this language, the gauge field two-form becomes ( ÛXa ≡

d
dτ Xa)

F = Fτa eτ∧ea + 1
2Fbc eb∧ec

= ÛXa eτ∧ea + 1
2
(
R[bXc] − 2εabcXa + [Xb, Xc]

)
eb∧ec ,

(10)

where we define R[bXc] = RbXc−RcXb, and the Yang–Mills Lagrangian reads

L = 1
8 trFµνF µν = − 1

4 trFτaFτa + 1
8 trFabFab

= − 1
2 tr

{ 1
2
ÛXa
ÛXa − 2XaXa + εabcXaD[bXc] −

1
4 (D[aXb])(D[aXb])

} (11)

with the short-hand Da := Ra + Xa. The Yang–Mills equations using (8) then take the form

ÜXa = − 4 Xa + 2 εabcR[bXc] + RbR[bXa] + 3 εabc [Xb, Xc]

+ 2[Xb, RbXa] − [Xb, RaXb] − [Xa, RbXb] −
[
Xb, [Xa, Xb]

]
= − 4 Xa + 2 εabcRbXc + RbRbXa − RaRbXb + 3 εabc [Xb, Xc]

+ 2[Xb, RbXa] − [Xb, RaXb] − [Xa, RbXb] −
[
Xb, [Xa, Xb]

] (12)

with the Gauss law
Ra
ÛXa + [Xa, ÛXa] = 0 . (13)

3. Yang–Mills configurations on de Sitter space

The simplest Yang–Mills solutions are most symmetric. To obtain them, let us impose SO(4)
symmetry by setting Xa(τ, ω) = Xa(τ). The Yang–Mills equations then become ordinary matrix
differential equations [3–5],

ÜXa = −4 Xa + 3 εabc [Xb, Xc] −
[
Xb, [Xa, Xb]

]
and [Xa, ÛXa] = 0 . (14)

These three coupled ordinary differential equations for the three matrix functions Xa(τ) are still too
complicated. However, for the gauge group SU(2), these equations admit some analytic solutions.
So let us choose a spin- j representation of g = su(2) and introduce the three SU(2) generators Ta,

[Tb,Tc] = 2 εabcTa and tr(TaTb) = −4C( j) δab for C( j) = 1
3 j( j+1)(2 j+1) . (15)

A simple ansatz for the matrices Xa is

X1 = Ψ1T1 , X2 = Ψ2T2 , X3 = Ψ3T3 with Ψa = Ψa(τ) ∈ R . (16)

The resulting simplification of Yang–Mills Lagrangian density,

L = 4 C( j)
{ 1

4
ÛΨa
ÛΨa − (Ψ1 − Ψ2Ψ3)

2 − (Ψ2 − Ψ3Ψ1)
2 − (Ψ3 − Ψ1Ψ2)

2} , (17)

suggests an interpretation of {Ψa} as the coordinates of a Newtonian particle in R3 moving in a
potential

1
2V(Ψ) = (Ψ1 − Ψ2Ψ3)

2 + (Ψ2 − Ψ3Ψ1)
2 + (Ψ3 − Ψ1Ψ2)

2 . (18)
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Figure 1: Contours of the Newtonian potential in (18).

The only analytic nonabelian solutions come from

Ψ1 = Ψ2 = Ψ3 =: Ψ with ÜΨ = 16Ψ (Ψ−1)(2Ψ−1) , (19)

leading to elliptic functionsΨ(τ), except for the special casesΨ(τ) = 0 or 1 (the vacuum), Ψ(τ) = 1
2

(the sphaleron), and the bounce solution in the double-well potential. The corresponding gauge
potential takes the simple form

A = Ψ(τ) g−1dg for g : S3 1:1
−→ SU(2) , (20)

and the SU(2) color electric and magnetic fields are

Ea = Fτa = ÛΨTa and Ba =
1
2εabcFbc = 2Ψ (Ψ−1)Ta . (21)

Their total de Sitter energy and action is finite and proportional to double-well energy. These analytic
Yang–Mills configurations are related toMinkowski-space solutions found in the seventies [6–8] (for
a review from this period, see [9]). Their stability, however, has been analyzed only recently [10].
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4. All Maxwell solutions on de Sitter space

The other analytic solutions to (12) and (13) are abelian, i.e. excite only a single direction in isospin
space. In this case we can drop the matrix valuedness and treat the Xa as real functions. Dropping
all commutator terms, the Yang–Mills equations (12) turn into the linear Mawell equations,

ÜXa = (R2 − 4) Xa + 2 εabcRbXc (22)

where R2 ≡ RbRb is the laplacian on S3, and we refined the temporal gauge to the Coulomb gauge

Aτ = 0 and RaXa = 0 , (23)

which takes care of the Gauss law.
The coupled wave equations (22) may be completely solved by separation of variables. Seeking

factorized complex basis solutions 1

Xa(τ, ω) = Za(ω) eiΩτ , (24)

one learns that the frequency Ω only depends on the SO(4) spin 2 j ∈ N0,

− R2 Z j
a(ω) = 2 j(2 j+2) Z j

a(ω) ⇒
(
(Ωj)2 − 4( j+1)2

) (
(Ωj)2 − 4 j2) = 0 , (25)

where the second factor appears only for j≥1. The basis solutions Z j
a to the linear system come in

two types and carry two further labels m and n [1]:

• type I : j≥0 , m = − j, . . . ,+ j , n = − j−1, . . . , j+1 , Ωj = ±2( j+1)

Z j;m,n
+ =

√
( j−n)( j−n+1)/2 Yj;m,n+1

Z j;m,n
3 =

√
( j−n+1)( j+n+1) Yj;m,n

Z j;m,n
− = −

√
( j+n)( j+n+1)/2 Yj;m,n−1

(26)

• type II : j≥1 , m = − j, . . . ,+ j , n = − j+1, . . . , j−1 , Ωj = ±2 j

Z j;m,n
+ = −

√
( j+n)( j+n+1)/2 Yj;m,n+1

Z j;m,n
3 =

√
( j+n)( j−n) Yj;m,n

Z j;m,n
− =

√
( j−n)( j−n+1)/2 Yj;m,n−1

(27)

where Z± = (Z1 ± iZ2)/
√

2, and the hyperspherical harmonics

Yj;m,n(ω) with m, n = − j,− j+1, . . . ,+ j and 2 j = 0, 1, 2, . . . (28)

are characterized by 2

− 1
4 R2 Yj;m,n = j( j+1)Yj;m,n and i

2 R3 Yj;m,n = nYj;m,n . (29)

1 Za(ω) is not to be confused with the ambient-space coordinates ZA.
2 The label m is the eigenvalue of i

2 L3.
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Hence, the general real Maxwell solution A = Xa(τ, ω) ea is a linear combination with

Xa(τ, ω) =
∑
jmn

{
cIj;m,n Z j;m,n

a I (ω) e
2(j+1) iτ + cIIj;m,n Z j;m,n

a II (ω) e
2j iτ + c.c.

}
. (30)

Each complex solution yields two real ones (real part and imaginary part). We count 2(2 j+1)(2 j+3)
real type-I solutions and 2(2 j+1)(2 j−1) real type-II solutions ( j≥1), which add up to 4(2 j+1)2

solutions for j>0 and 6 solutions for j=0, as it should. Constant solutions (Ω = 0) are not allowed;
the simplest ones are j=0 type I or j=1 type II. The most general j=0 configuration is

X (j=0)
a =

{
c0;0,−1

1√
2

( 1
−i
0

)
+ c0;0,0

( 0
0
1

)
− c0;0,+1

1√
2

( 1
i
0

)}
e2iτ + c.c. . (31)

The parity inversion, which interchanges left and right invariance, relates spin j type I solutions
with spin j+1 type II solutions, swopping labels m and n. Finally, electromagnetic duality is
realized by shifting |Ωj |τ by ± π2 , which produces from a solution A a dual solution AD . We
shall now see that this basis of Maxwell solutions relates to so-called electromagnetic knots in
Minkowski space.

5. Conformal mapping to Minkowski space

The Z0+Z4<0 half of dS4 is also conformally related to future Minkowski space R1,3
+ 3 {t, x, y, z},

Z0 =
t2−r2−`2

2 t
, Z1 = `

x
t
, Z2 = `

y

t
, Z3 = `

z
t
, Z4 =

r2−t2−`2

2 t

with x, y, z ∈ R and r2 = x2 + y2 + z2 but t ∈ R+ ,

(32)

since t ∈ [0,∞] corresponds to Z0 ∈ [−∞,∞] but Z0+Z4 < 0. In these Minkowski coordinates,

ds2 =
`2

t2
(
−dt2 + dx2 + dy2 + dz2) . (33)

One may cover the entire R1,3 by gluing a second dS4 copy and using the patch Z0+Z4 > 0.
We shall employ the direct relation between the cylinder and Minkowski coordinates,

cot τ =
r2−t2+`2

2 ` t
, ω1 = γ

x
`
, ω2 = γ

y

`
, ω3 = γ

z
`
, ω4 = γ

r2−t2−`2

2 `2 , (34)

with the convenient abbreviation

γ =
2 `2√

4 `2t2 + (r2 − t2 + `2)2
. (35)

Since t = −∞, 0,∞ corresponds to τ = −π, 0, π, the cylinder gets doubled to 2I × S3, and full
Minkowski space is covered by the cylinder patch ω4 ≤ cos τ. The cylinder time τ is a regular
smooth function of (t, x, y, z), but more useful will be

exp(2i τ) =
[
(` + it)2 + r2]2

4 `2t2 + (r2 − t2 + `2)2
. (36)
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Figure 2: An illustration of the map between a cylinder 2I×S3 and Minkowski space R1,3. The Minkowski
coordinates cover the shaded area. Its boundary is given by the curve ω4 = cos τ. Each point is a two-sphere
spanned by ω1,2,3, which is mapped to a sphere of constant r and t.

A slightly lengthy computation yields the Minkowski-coordinate expressions for the one-forms [1],

e0 = e0
µ dxµ =

γ2

`3

(
1
2 (t

2 + r2 + `2) dt − t xkdxk
)
,

ea = eaµ dxµ =
γ2

`3

(
t xadt −

( 1
2 (t

2 − r2 + `2) δak + xaxk + ` εajk x j ) dxk
)
,

(37)

with the notation

(xi) = (x, y, z) and (xµ) = (x0, xi) = (t, x, y, z) . (38)

Due to the conformal invariance of the Maxwell equations, our oscillatory solutions on the
cylinder 2I×S3 may be transferred to a basis of Maxwell solutions on Minkowski space (with
certain fall-off properties). To accomplish this task, we only have to effect the coordinate change 3

from (τ, ω) ∼ (τ, χ, θ, φ) to x ≡ (xµ) = (t, x, y, z) ∼ (t, r, θ, φ) , (39)

so that

A = Xa(τ(x), ω(x)) ea(x) = Aµ(x) dxµ yielding Aµ(x) with At , 0 , (40)

dA = ÛXa e0∧ea − εabcXa eb∧ec = 1
2 Fµν dxµ∧dxν yielding Fµν(x) . (41)

From this, we obtain electric and magnetic fields Ei = Fi0 and Bi =
1
2εi jkFjk . For the

computation it is helpful to recognize that exp(2iτ) is a rational function of t and r . It follows that
all physical quantities (and the gauge potential) are rational functions of theMinkowski coordinates!

3 The S2 angular coordinates (θ, φ) on both sides can be identified. The map (τ, χ) 7→ (t, r) realizes the Penrose
diagram of Minkowski space [2].
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6. All knot solutions on Minkowski space

As we shall see below, the simplest ( j=0) solutions neatly reproduces the celebrated Hopf-Rañada
electromagnetic knot [11, 12]. From our construction, some general features of all knot solutions
can be inferred.

Firstly, at spatial infinity (for t fixed) all field strengths decay like r−4, but they fall off only as
(t±r)−1 along the light-cone. Hence, the asymptotic energy flow is concentrated on past and future
null infinity and peaks on the light-cone of the spacetime origin. Secondly, the “knot basis” forms
a complete set of finite-action configurations. Of course, it does not contain plane waves. Thirdly,
the obvious conserved (in Minkowski time) quantities are helicity and energy,

h = 1
2

∫
R3

(
A ∧ F + AD ∧ FD

)
and E = 1

2

∫
R3

d3x
(
®E2 + ®B2) , (42)

where the spatial integration is done at fixed t. Their common scale is determined by the amplitude
of the solution, but their ratio is fixed for the basis configurations. Both quantities are best computed
in the “sphere frame” at t = τ = 0,

F = Ea ea∧e0 + 1
2Ba ε

a
bc eb∧ec . (43)

Let us focus on type I solutions of a fixed spin j and suppress these indices. For those one finds

Ea = −iΩ
∑
mn

cm,n Zm,n
a eiΩτ + c.c. and Ba = −Ω

∑
mn

cm,n Zm,n
a eiΩτ + c.c. , (44)

which yields
1
2
(
EaEa + BaBa

)
= 2Ω2��∑

m,ncm,n Zm,n
a (ω)

��2 . (45)

TheMinkowski energy at t=0 is easily pulled back to the cylinder frame and evaluated by exploiting
the orthogonality properties of the hyperspherical harmonics [2],

E = 1
2`

∫
S3

d3
Ω3 (1−ω4)

(
EaEa + BaBa

)
= 1

` (2 j+1)Ω3
∑
m,n

|cm,n |2 . (46)

A similar computation produces an expression for the helicity. It turns out that single-spin solutions
(of both types) have a universal energy-to-helicity ratio E/h = |Ω|/`.

Fourthly, so-called null fields are easily characterized,

®E2− ®B2 = 0 = ®E · ®B ⇔ ( ®E ± i ®B)2 = 0 ⇔
∑
a

(Ea ± iBa)
2 = 0 . (47)

For fixed spin j and type I we infer from above that

Ea + iBa = −2iΩ
∑
mn

cm,n Zm,n
a (ω) eiΩτ (no c.c.!) , (48)

hence in such a sector we have [2]

Fµν null ⇔
∑
a

(∑
mn

cm,n Zm,n
a (ω)

)2
= 0 . (49)

8
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Given the known form of the functions Zm,n
a (ω) we can expand this expression in hyperspherical

harmonics and arrive at 1
6 (4 j+1)(4 j+2)(4 j+3) homogeneous quadratic equations for (2 j+1)(2 j+3)

complex parameters cm,n. This system is vastly overdetermined, but only 4 j2+6 j+1 equations are
independent, and thus we are still left with 2 j+2 free complex parameters for the solution manifold,
which is explicitly parametrized as follows [2],4

cm,n(w, ®z) =
√
( 2 j+2
j+1−n) w

j+1−n
2 j+2 e2πikm j+1−n

2 j+2 zm with w ∈ C∗ and ®z ≡ {zm} ∈ C2j+1 (50)

and a choice of 2 j+1 integers km ∈ {0, 1, . . . , 2 j+1} (one of which can be absorbed into zm).
Given that the overall scale of the solutions is irrelevant, the null fields form a complete-intersection
projective variety of complex dimension 2 j+1 insideCP(2j+1)(2j+3)−1. The simplest example occurs
for spin j=0, where the single null-field relation c2

0,0 = 2 c0,−1 c0,1 defines a generic rank-3 quadric in
CP2 or, alternatively, a cone over CP1 lying in C3.

7. Examples

We close with two concrete examples. First, the j=0 case represents SO(4)-symmetric Maxwell
solutions in de Sitter space, meaning Xa(τ, ω) = Xa(τ) thus RaXb = 0 and trivializing (22) to

ÜXa = −4 Xa ⇒ Xa(τ) = ξa cos
(
2(τ−τa)

)
, (51)

which describes an ellipse in R3.5 We may always choose a frame where ξ3 = 0 and τ2 = 0. The
overall amplitude is irrelevant as all equations are linear, and solutions can be superposed at will.
Specializing to

ξ1 = ξ2 = −
1
8 and τ1 =

π
4 ⇔ c0;0,−1 = c0;0,0 = 0 and c0;0,1 ∈ iR , (52)

one has a null configuration with components

X1(τ) = −
1
8 sin 2τ , X2(τ) = −

1
8 cos 2τ , X3(τ) = 0 . (53)

The result of a short computation yields

®E + i ®B =
`2(

(t − i`)2 − r2)3

©­­«
(x − iy)2 − (t − i` − z)2

i(x − iy)2 + i(t − i` − z)2

−2 (x − iy) (t − i` − z)

ª®®¬ . (54)

This is the announced Hopf–Rañada electromagnetic knot [11, 12]. Our approach also yields its
gauge potential.

Second, let us take the real part of the ( j; m, n) = (1; 0, 0) type I basis solution. Combining
e4iτ+e−4iτ = 2 cos 4τ and expressing Y1;0,? from (26) in terms of ωA, we get

X± = −
√

3
π (ω1±iω2)(ω3±iω4) cos 4τ and X3 = −

√
6
π (ω

2
1+ω

2
2−ω

2
3−ω

2
4) cos 4τ . (55)

4 These are the generic solutions. There also exist special solutions with cm,n = 0 for |n| , j+1.
5 Every solution Xa(τ) spontaneously breaks the SO(4) invariance by the choice of integration constants (ξa, τa).
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This solution takes the explicit form (putting `=1)

(E+iB)x =
−2i(

(t − i)2 − x2 − y2 − z2)5 ×

×

{
2y + 3ity − xz + 2t2y + 2it xz − 8x2y − 8y3 + 4yz2

+ 4it3y − 6t2xz − 8it x2y − 8ity3 + 4ityz2 + 10x3z + 10xy2z − 2xz3

+ 2(it xz + x2y + y3 + yz2)(−t2 + x2 + y2 + z2) + (ity − xz)(−t2 + x2 + y2 + z2)2
}
,

(E+iB)y =
2i(

(t − i)2 − x2 − y2 − z2)5 ×

×

{
2x + 3it x + yz + 2t2x − 2ityz − 8x3 − 8xy2 + 4xz2

+ 4it3x + 6t2yz − 8it x3 − 8it xy2 + 4it xz2 − 10x2yz − 10y3z + 2yz3

+ 2(−ityz + x3 + xy2 + xz2)(−t2 + x2 + y2 + z2) + (it x + yz)(−t2 + x2 + y2 + z2)2
}
,

(56)
(E+iB)z =

i(
(t − i)2 − x2 − y2 − z2)5 ×

×

{
1 + 2it + t2 − 11x2 − 11y2 + 3z2 + 4it3 − 16it x2 − 16ity2 + 4itz2

− t4 − 2t2x2 − 2t2y2 − 2t2z2 + 11x4 + 22x2y2 + 10x2z2 + 11y4 − 10y2z2 + 3z4

+ 2it(t2 − 3x2 − 3y2 − z2)(t2 − x2 − y2 − z2) − (t2 + x2 + y2 − z2)(−t2 + x2 + y2 + z2)2
}
.

Figures 3 and 4 below show t=0 energy density level surfaces and a particular magnetic field line.

Figure 3: Energy density level surfaces at t=0 for the (1; 0, 0) solution above.
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Figure 4: A particular magnetic field line for the (1; 0, 0) solution above.

8. Summary and discussion

• Rational electromagnetic fields with nontrivial topology have been investigated since 1989

• We introduced a new construction method based on two insights:

– the simplicity of solvingMaxwell’s equations on a temporal cylinder over a three-sphere

– the conformal equivalence of a cylinder patch {τ, ω} to Minkowski space {x} ≡ {t, ®x}

• The gauge potential is transferred via A = Xν(τ, ω) eν = Xν(τ(x), ω(x)) eνµ(x) dxµ

• Only finite-time τ ∈ (−π,+π) dynamics is required on the cylinder

• Our solutions have finite energy and action, by construction

• Energy and helicity are easily computed, null fields can be fully characterized

• A complete basis was constructed for sufficiently fast spatially and temporally decaying fields

• The non-Abelian extension couples different j components of Xa and will be harder to treat

• The method may be useful for numerics of Yang–Mills dynamics in Minkowski space
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