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Property called triality that manifests itself as equivalence of vectors and chiral spinors is demon-
strated in (4+4) space. It is shown that split octonionic representation of this phenomenon respects
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Split Octonions and Triality in (4+4) Space Alexandre Gurchumelia

1. Introduction

Octonion and split octonion algebras are not commonly seen in theoretical and mathematical
physics. However their use has been suggested in various domains, include GUT models [1–3],
formalization of quark structure and color symmetry [4, 5], description of elementary particle
generations [6, 7], formulation of quantum mechanics [8], associator quantization [9], M-theory
[10], electrodynamics [11], gravity [12] and geometry [13–16]. These algebras have been also
used for representation of some of the Lie groups with subgroups significant to physics: 𝑆𝑈 (3),
𝑆𝑈 (2) ⊗ 𝑆𝑈 (2) and 𝑆𝑂 (3, 1) [4, 17].

Octonions are far from having an established place in physics unlike the other three normed
division algebras – quaternions, complex numbers and reals. This is primarily because they lack
the associative property, which makes them hard to work with. Applications of split octonions are
considered even less often, which might be due to the fact that, apart from associative property, they
also lack divisibility. However, all non-invertible split octonions constitute a manifold containing
copies of relativistic light cones, which is precisely why they are interesting to study in the context
of geometry [15].

Here we highlight one of the unique properties of (4+4)-space concerning the equivalence of
vectors and chiral spinors in this space. This peculiarity, referred to as triality, was noted in [18] for
the Euclidean space of the same dimension. Larger aim of the research is investigating a possible
unification of internal and external symmetries under split octonion algebra.

2. Overview

Before presenting novel results let us briefly discuss some established mathematical results.

2.1 Cayley-Dickson constructions and Hurwitz algebras

Octonions O and split octonions O′ are Cayley-Dickson constructions obtained by doubling
the real number algebra three times. Doubling procedure is as follows: given involution algebra
(A𝑛, +,×), the algebra (A𝑛+1, +,×) is constructed for A𝑛+1 = A𝑛 × A𝑛, where

(𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑) , (with 𝑎, 𝑏, 𝑐, 𝑑 ∈ A𝑛)
(𝑎, 𝑏) × (𝑐, 𝑑) = (𝑎𝑐 − 𝛾𝑑∗𝑏, 𝑑𝑎 + 𝑏𝑐∗) , (with 𝛾 = ±1)
(𝑎, 𝑏)∗ = (𝑎∗,−𝑏) .

(1)

For example starting from A0 = R with 𝛾 = 1 the following chain of algebras is obtained: complex
numbers A1 = C, Hamilton’s quaternions A2 = H, octonions A3 = O, sedenions A4 = S and so on.
Each doubling removes some properties of real number field. For instance, A3 is the last algebra in
which division is always possible, making it the largest of four Hurwitz algebras – R, C, H and O,
out of which only first three are associative and hence have matrix representations. Setting 𝛾 = −1
produces split algebras, including split octonions.

2.2 Clifford algebras Cℓ𝑝,𝑞 (R)

Clifford algebras are a standard tool for dealing with spinors and also many other geometric
problems. Simplest motivating example is derived from requiring square of a vector x = 𝑥1𝑒1 +
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𝑥2𝑒2 ∈ R2 to be equal to its length x2 = 𝑥2
1 + 𝑥2

2. This leads to an algebraic relation

𝑒𝑚𝑒𝑛 + 𝑒𝑛𝑒𝑚 = 2𝑔𝑚𝑛 , (2)

that generalizes to any dimension and diagonal metric 𝑔𝑚𝑛 with (𝑝, 𝑞) signature. Familiar examples
are Pauli 𝜎𝑛 matrices that generate the algebra of physical space Cℓ3,0 (R) and Dirac 𝛾𝜇 matrices
that generate spacetime algebra Cℓ1,3 (R).

Using the algebra Cℓ𝑝,𝑞 (R), group transformations of 𝑆𝑂 (𝑝, 𝑞) are represented as

x′ = exp
(
−1

2
ã
)

x exp
(
1
2

ã
)
, (3)

where ã is a bivector. Corresponding spin group 𝑆𝑝𝑖𝑛 (𝑝, 𝑞) is represented as

𝜓 ′ = exp
(
−1

2
ã
)
𝜓 , (4)

where spinor 𝜓 is identified as minimal left ideal of the algebra, in other words 𝜓 is an element
from subalgebra which is closed under left multiplication by general Cℓ𝑝,𝑞 (R) element. Minimal
left ideals are easy to find after determining matrix representation of the Clifford algebra under
consideration since they are always a single column vector, or some portion of it when matrix
representations are block diagonal.

Number of free parameters of spinor scales exponentially with the dimension of space, i.e.
dimension of physical vectors in that space. Coincidences in the number of parameters of spinors
and vectors only happen in four cases – when dimensions of space matches dimension of one of the
four normed division algebras. Largest such case is in 8 dimensions where two chiral spinors are
described by 8 real parameters each.

For more details about this subject and method of finding matrix representations of Clifford
algebras see [19].

2.3 Split octonions

General split octonion A ∈ O′ is written as

A = 𝐴0 + 𝐴1 𝑗1 + 𝐴2 𝑗2 + 𝐴3 𝑗3 + 𝐴4𝐼 + 𝐴5𝐽1 + 𝐴6𝐽2 + 𝐴7𝐽3 , (5)

where 𝐴0, 𝐴1, . . . ∈ R. Multiplication rules are determined through the following algebraic relations

𝑗𝑚 𝑗𝑛 = −𝛿𝑚𝑛 + Σ
𝑘
𝜖𝑚𝑛𝑘 𝑗𝑘 ,

𝐼2 = 1 ,

𝐽𝑚𝐽𝑛 = 𝛿𝑚𝑛 + Σ
𝑘
𝜖𝑚𝑛𝑘 𝑗𝑘 ,

𝑗𝑛𝐼 = 𝐽𝑛 ,

𝐽𝑚 𝑗𝑛 = 𝛿𝑚𝑛𝐼 − Σ
𝑘
𝜖𝑚𝑛𝑘𝐽𝑘 ,

(𝑚, 𝑛, 𝑘 = 1, 2, 3) (6)

which is succinctly thumbed up in a Fano plane mnemonic (Figure 1).
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Figure 1: Fano plane structure of split octonion multiplication table.

Modulus of a split octonion is obtained through a quadratic formA = 𝐴2
0 + 𝐴2

1 + 𝐴2
2 + 𝐴2

3 − 𝐴2
4 − 𝐴2

5 − 𝐴2
6 − 𝐴2

7 (7)

and can be calculated using split octonionic conjugate

A = 𝐴0 − 𝐴1 𝑗1 − 𝐴2 𝑗2 − 𝐴3 𝑗3 − 𝐴4𝐼 − 𝐴5𝐽1 − 𝐴6𝐽2 − 𝐴7𝐽3 (8)

as
A = AA. The inner product · : O′×O′ → R between two split octonions A,B ∈ O′ generalizes

the modulus as
A · B =

1
2

(
AB + BA

)
. (9)

3. Triality in (4+4) space

Triality symmetry of (4+4)-space can be demonstrated using matrix representation ofCℓ4,4 (R).
Generating Γ𝜇-matrices of Cℓ4,4 (R) are 16 dimensional and can be obtained from generating 𝐴𝜇

matrices of Cℓ8,0 (R) as follows

Γ𝜇 = 𝐴𝜇 for 𝜇 = 0, 1, 2, 3 ,
Γ𝜇 = 𝑖𝐴𝜇 for 𝜇 = 4, 5, 6, 7 .

(1)

This changes Euclidean metric into the split metric. Matrices 𝐴𝜇 are Hermitian and have the form

𝐴𝜇 =

(
0 𝛼𝜇

𝛼
†
𝜇 0

)
, (2)

where

𝛼0 =

©«

−1
1

1
1

−1
−1

−1
1

ª®®®®®®®®®®®®®¬
, 𝛼1 =

©«

𝑖

𝑖

𝑖

𝑖

𝑖

𝑖

𝑖

𝑖

ª®®®®®®®®®®®®®¬
,

4
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𝛼2 =

©«

1
1

−1
−1

−1
−1

1
1

ª®®®®®®®®®®®®®¬
, 𝛼3 =

©«

−𝑖
𝑖

𝑖

𝑖

−𝑖
−𝑖

−𝑖
𝑖

ª®®®®®®®®®®®®®¬
,

𝛼4 =

©«

1
1

1
−1

1
−1

−1
−1

ª®®®®®®®®®®®®®¬
, 𝛼5 =

©«

𝑖

𝑖

−𝑖
−𝑖

−𝑖
−𝑖

𝑖

𝑖

ª®®®®®®®®®®®®®¬
,

𝛼6 =

©«

1
1

1
1

1
1

1
1

ª®®®®®®®®®®®®®¬
, 𝛼7 =

©«

−𝑖
−𝑖

−𝑖
𝑖

−𝑖
𝑖

𝑖

𝑖

ª®®®®®®®®®®®®®¬
.

Using Γ𝜇 matrices the (4+4)-vector can be written as

X =

7∑︁
𝜈=0

𝑥𝜈Γ𝜈 , (3)

which squares to

X2 = 𝑥2
0 + 𝑥2

1 + 𝑥2
2 + 𝑥2

3 − 𝑥2
4 − 𝑥2

5 − 𝑥2
6 − 𝑥2

7 . (4)

Matrix X that represents a vector is transposed by 𝐵 = −𝛾1𝛾3𝛾5𝛾7 as

X𝑇 = 𝐵X𝐵 . (5)

5
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Choosing particular basis of spinor 𝜉 = 𝜙 + 𝜓,

𝜉 =
1
√

2

©«

−𝜙2 + 𝑖𝜙3

𝜙0 − 𝑖𝜙1

−𝜙7 − 𝑖𝜙6

−𝜙5 + 𝑖𝜙4

−𝜙5 − 𝑖𝜙4

𝜙7 − 𝑖𝜙6

−𝜙0 − 𝑖𝜙1

−𝜙2 − 𝑖𝜙3

𝜓2 − 𝑖𝜓3

−𝜓0 − 𝑖𝜓1

−𝜓7 − 𝑖𝜓6

−𝜓5 + 𝑖𝜓4

𝜓5 + 𝑖𝜓4

−𝜓7 + 𝑖𝜓6

−𝜓0 + 𝑖𝜓1

−𝜓2 − 𝑖𝜓3

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

,

it can be observed that chiral spinors square to the same quadratic form as the vector

𝜙𝑇 𝐵𝜙 = 𝜙2
0 + 𝜙2

1 + 𝜙2
2 + 𝜙2

3 − 𝜙2
4 − 𝜙2

5 − 𝜙2
6 − 𝜙2

7 ,

𝜓𝑇 𝐵𝜓 =𝜓2
0 + 𝜓2

1 + 𝜓2
2 + 𝜓2

3 − 𝜓2
4 − 𝜓2

5 − 𝜓2
6 − 𝜓2

7 .
(6)

The following trilinear form F : R8 × R8 × R8 → R on vector and spinors

F (𝜙,X, 𝜓) = 𝜙𝑇 𝐵X𝜓 , (7)

is invariant under 𝑆𝑂 (4, 4) and 𝑆𝑝𝑖𝑛 (4, 4) group transformations, i.e F (𝜙′,X′, 𝜓 ′) = F (𝜙,X, 𝜓).
Furthermore, roles of vector X and chiral spinors 𝜙 and 𝜓 are completely interchangeable. This
phenomenon is called triality. For demonstrating this let us consider the transformation

𝐿01 (𝜗) = exp
(
−1

2
𝜗Γ0Γ1

)
, (8)

in the tangential space
𝐿01 (𝜗) ' 1 − 1

2
𝜗Γ0Γ1 , (9)

which is written in components as

𝑥 ′0 = 𝑥0 − 𝜗𝑥1

𝑥 ′1 = 𝑥1 + 𝜗𝑥0

𝑥 ′2 = 𝑥2

𝑥 ′3 = 𝑥3

𝑥 ′4 = 𝑥4

𝑥 ′5 = 𝑥5

𝑥 ′6 = 𝑥6

𝑥 ′7 = 𝑥7



𝜙′
0 = 𝜙0 + 1

2𝜗𝜙1

𝜙′
1 = 𝜙1 − 1

2𝜗𝜙0

𝜙′
2 = 𝜙2 − 1

2𝜗𝜙3

𝜙′
3 = 𝜙3 + 1

2𝜗𝜙2

𝜙′
4 = 𝜙4 − 1

2𝜗𝜙5

𝜙′
5 = 𝜙5 + 1

2𝜗𝜙4

𝜙′
6 = 𝜙6 + 1

2𝜗𝜙7

𝜙′
7 = 𝜙7 − 1

2𝜗𝜙6



𝜓 ′
0 =𝜓0 + 1

2𝜗𝜓1

𝜓 ′
1 =𝜓1 − 1

2𝜗𝜓0

𝜓 ′
2 =𝜓2 + 1

2𝜗𝜓3

𝜓 ′
3 =𝜓3 − 1

2𝜗𝜓2

𝜓 ′
4 =𝜓4 + 1

2𝜗𝜓5

𝜓 ′
5 =𝜓5 − 1

2𝜗𝜓4

𝜓 ′
6 =𝜓6 − 1

2𝜗𝜓7

𝜓 ′
7 =𝜓7 + 1

2𝜗𝜓6

. (10)
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Figure 2: Dynkin diagram 𝐷4

At this point it is easy to notice that transformations on vector X can be constructed in a way which
will exactly repeat spinorial transformations. This is achieved by

𝐿10

(
𝜗

2

)
𝐿23

(
𝜗

2

)
𝐿54

(
𝜗

2

)
𝐿67

(
𝜗

2

)
' 1 − 1

4
𝜗 (𝛾1𝛾0 + 𝛾2𝛾3 + 𝛾5𝛾4 + 𝛾6𝛾7) . (11)

After applying these transformations the behaviors of X,𝜙 and 𝜓 get cyclically swaps

𝑥 ′0 = 𝑥0 + 1
2𝜗𝑥1

𝑥 ′1 = 𝑥1 − 1
2𝜗𝑥0

𝑥 ′2 = 𝑥2 − 1
2𝜗𝑥3

𝑥 ′3 = 𝑥3 + 1
2𝜗𝑥2

𝑥 ′4 = 𝑥4 − 1
2𝜗𝑥5

𝑥 ′5 = 𝑥5 + 1
2𝜗𝑥4

𝑥 ′6 = 𝑥6 + 1
2𝜗𝑥7

𝑥 ′7 = 𝑥7 − 1
2𝜗𝑥6

,



𝜙′
0 = 𝜙0 + 1

2𝜗𝜙1

𝜙′
1 = 𝜙1 − 1

2𝜗𝜙0

𝜙′
2 = 𝜙2 + 1

2𝜗𝜙3

𝜙′
3 = 𝜙3 − 1

2𝜗𝜙2

𝜙′
4 = 𝜙4 + 1

2𝜗𝜙5

𝜙′
5 = 𝜙5 − 1

2𝜗𝜙4

𝜙′
6 = 𝜙6 − 1

2𝜗𝜙7

𝜙′
7 = 𝜙7 + 1

2𝜗𝜙6

,



𝜓 ′
0 =𝜓0 − 𝜗𝜓1

𝜓 ′
1 =𝜓1 + 𝜗𝜓0

𝜓 ′
2 =𝜓2

𝜓 ′
3 =𝜓3

𝜓 ′
4 =𝜓4

𝜓 ′
5 =𝜓5

𝜓 ′
6 =𝜓6

𝜓 ′
7 =𝜓7

. (12)

This symmetry of triality is directly connected to the symmetry of 𝑆𝑂 (8) and 𝑆𝑂 (4, 4) Dynkin
diagram (Figure 2).

4. Triality and split octonionions

As seen above, (4+4)-vector X and chiral spinors 𝜙 and 𝜓 are represented by different kinds of
objects when described by Cℓ4,4 (R), namely X is a matrix and spinors are column vectors. This
is despite the fact that distinction between the spinors and the vector is arbitrary due to triality
symmetry. However, representing these objects with split octonions respects the triality symmetry
and all three objects become of the same type

X = 𝑥0 + 𝑥1 𝑗1 + 𝑥2 𝑗2 + 𝑥3 𝑗3 + 𝑥4𝐼 + 𝑥5𝐽1 + 𝑥6𝐽2 + 𝑥7𝐽3 ,

Φ = 𝜙0 + 𝜙1 𝑗1 + 𝜙2 𝑗2 + 𝜙3 𝑗3 + 𝜙4𝐼 + 𝜙5𝐽1 + 𝜙6𝐽2 + 𝜙7𝐽3 ,

Ψ =𝜓0 + 𝜓1 𝑗1 + 𝜓2 𝑗2 + 𝜓3 𝑗3 + 𝜓4𝐼 + 𝜓5𝐽1 + 𝜓6𝐽2 + 𝜓7𝐽3 .

(1)

Furthermore, quadratic forms are also calculated identically to each other which can be seen from
the following connection between the two representations

XX =X2 ,

ΦΦ = 𝜙𝑇 𝐵𝜙 ,

ΨΨ =𝜓𝑇 𝐵𝜓 .

(2)

7
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In this representation trilinear form F : O′ × O′ × O′ → R is evaluated as follows

F (Φ,X,Ψ) = −Φ · (XΨ) .

5. Summary and outlook

It was shown that in (4+4)-space vectors and chiral spinors are equivalent and invariant triliniar
form evaluated on them was explicitly written. We had also demonstrated that in this space the
vector and the two spinors can be parameterized by a single split octonionic number, which respects
the triality symmetry unlike the Clifford algebraic description.

In further works split octonionic representation of 𝑆𝑂 (4, 4) and 𝑆𝑝𝑖𝑛 (4, 4) groups should be
established. Also, application of analyticity condition to the trilinear form must be studied as it is
expected to produce generalization of field equations.
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