PROCEEDINGS

OF SCIENCE

SingularPhasespace and helicity recycling in
MadGraph5_ aMC@NLO

Kiran Ostrolenk®*

“School of Physics and Astronomy, University of Manchester,
Manchester, UK

E-mail: kiran.ostrolenk@postgrad.manchester.ac.uk, kostrolenk@gmail.com

We present here two separate projects.

The first is a phase-space generator, dubbed SingularPhasespace. It is designed to help probe the
singular limits of NLO simulations. It is hoped this will prove to be a useful tool for developers.
The user (or SingularPhasespace) chooses an initial momentum configuration for the hard process
and then new events are generated that are successively more and more singular. This is done
whilst trying to keep as close to the initial event as possible. This allows for a clear understanding
of how the simulation behaves in the singular limit.

The second project is our implementation of ‘helicity recycling’ within MADGraAPH_aMC@NLO.
This is a restructuring of the code that allows the program to recycle parts of the matrix-element
calculation when summing it over helicities. This optimisation is applicable to all LO processes.
For complex processes we can see a speed up of a factor of ~2x.

Tools for High Energy Physics and Cosmology - TOOLS2020
2-6 November, 2020
Institut de Physique des 2 Infinis (IP21), Lyon, France

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:kiran.ostrolenk@postgrad.manchester.ac.uk
mailto:kostrolenk@gmail.com
https://pos.sissa.it/

SingularPhasespace and helicity recycling in MadGraph5_aMC@NLO Kiran Ostrolenk

Here we present the outcome of two separate projects. In section (1) a new phase-space
generator is presented that will hopefully prove useful for developers of NLO event generators.
It was written by myself in collaboration with Michael Seymour of the University of Manchester
and Simon Plitzer of the University of Vienna. In section (2) is presented a re-structuring of
the MADGRAPHS_AMC@NLO code that has allowed us to speed-up event generation. This re-
structuring was performed by myself in collaboration with Olivier Mattelaer of the Université
catholique de Louvain.

1. SingularPhasespace
Simulations accurate to NLO are built on three key ingredients [1]:

* the matrix elements;
* the subtraction terms used to regulate the infrared divergences of the matrix elements;

* the terms used to cancel the double counting of logarithms (if the simulation is matched to a
parton shower).

These terms themselves will be a sum over many terms. For example, the real matrix element alone
can be built up from 1000s of diagrams (depending on how complex the simulated process is). NLO
event generators, such as those in Refs. [2—4], have to handle these terms in a process independent
and fully automated way and as such they become substantial, complicated algorithms.

This complexity can result in unexpected behaviour or in bugs that are difficult to diagnose.
Usually such issues will be magnified in the singular limits, where the terms listed above can become
arbitrarily large. As such, being able to easily view how a simulation behaves in the singular limits
is a useful tool for developers. This can be an impractical task when using a standard, random
phase-space generator that is attempting to mimic nature. Firstly, it can take an unreasonable amount
of computing resources to wait for such a generator to happen to populate the singular regions of
phase space. Secondly, because the generation is random, it is not easy to target a specific kinematic
configuration within a broader singular limit.

SingularPhasespace was developed as a response to these limitations. Rather than populating
phase space randomly, it is populated in a controlled and predictable way. First the user chooses
which hard process they wish to simulate and an initial momentum configuration for said process.
Alternatively, SingularPhasespace can choose a random configuration. The user must also choose
which limit they wish to probe (soft or collinear) and which particle they wish to push into this limit
(henceforth refered to as the ‘target’ particle).

Next, SingularPhasespace will generate a set of events where the target particle is gradually
made softer and softer or more and more collinear to another particle in the event (according to the
users choice). This is done whilst trying to keep the other momenta in the events as fixed as possible.
This means that any variation in the matrix elements or subtraction terms will be purely down to the
target particle approaching the singular limit. In practice it is not possible to keep the other momenta
entirely fixed for two reasons. Firstly, momentum conservation between initial and final states must
be respected. Secondly, all external particles must be kept on-shell. As such, SingularPhasespace

SingularPhasespace and helicity recycling in MadGraph5_aMC@NLO Kiran Ostrolenk

1.2 7
 § scale
hr scale
o2
g .§41.1 8
=S
Lle
S| 0
=< |8
z| 8
- o
S|E 1
=
w2
0.9 T T TTTTTW T T TTTTTW T T T T T TTT
1072 107! 10° 10!

min(+/2p; - p;)/GeV

Figure 1: Each data point on this plot corresponds to a gg — ggg event generated with SingularPhasespace.
The x-axis is the minimum value of m where p; is the momentum of the forward initial state particle
and p; ranges over final state parton momenta. Going to lower values on the x-axis corresponds to p; and p;
going collinear and as such we are approaching a singular limit. The y-axis is the ratio between the matrix
element and the subtraction dipole. If the simulation is functioning correctly this ratio should tend to 1 in the
singular limit. One can see this is true when using the A7 scale but not the § scale.

will implement some slight re-shuffling of the other momenta but in practice we find this does not
significantly disrupt the above picture. In particular, SingularPhasespace makes sure that all events
have the same total momentum as was in the initial momentum configuration.
SingularPhasespace will be integrated into an upcoming version of Herwig. However, the
events it generates can be exported as a HepMC file and so used within other event generators [5].

1.1 Toy example

In this section we will use a toy example to show how SingularPhasespace can be helpful.
We will do this by inserting by hand a problem into our simulation: we will use § as our scale
choice, where § is defined as the total momentum of the hard process. The cancellation of infrared
divergences is only guaranteed for observables that are insensitive to soft and collinear radiation.
This is known as infrared-collinear (IRC) safety [6]. Notice that § is sensitive to initial state collinear
radiation and so is not IRC safe. As such, with § as our scale choice our simulation will no longer
be regularised in the collinear limit. Accordingly, the events of this simulation will have arbitrarily
large weights and give the incorrect cross section.

Now imagine that we were unaware that the scale choice was responsible for these problems.
As such, we will try and use SingularPhasespace to help us diagnose the issue. In figure (1) we have
shown the ratio of the matrix element (ME) and the subtraction dipole (SD) for a SingularPhasespace
simulation of gg — ggg using the § scale. Moving to lower values on the x-axis corresponds to
moving closer to the collinear limit. As such we would expect the ratio between ME and SD to tend
to 1 but instead one can see it tends to some constant number just off one. The fact that this offset

SingularPhasespace and helicity recycling in MadGraph5_aMC@NLO Kiran Ostrolenk

is constant is an unusual and interesting feature of the plot. SingularPhasespace is encouraging us
to look for some other feature of the simulation that is also held constant.

One may remember from the earlier discussion that throughout all these events the total
momentum is held constant, meaning that § is kept constant. Hence, the plot in figure (1) is
suggesting to us that the § scale choice is the source of the issue! Notice that if we had not used
SingularPhasespace but had instead used a random phase-space generator the data points would no
longer take the form of a clean line. Instead the data points would be randomly smeared out and as
such we would not see the issue’s constant nature. Hence, SingularPhasespace has proved useful
in locating the scale choice as the source of the issue in the simulation.

In figure (1) we have also shown the same plot but now with the i scale!, which is IRC safe.
With this choice the ME to SD ratio tends to one, as expected.

2. Helicity recycling

MADGRrRAPHS_AMC@NLO (MG5aMC for short) is a program designed for, amongst other
things, evaluating a given matrix element across a set of generated phase-space points. This matrix
element will be a sum over Feynman diagrams. A diagram is calculated by iteratively working
through each vertex and evaluating the so-called ‘wave functions’ of the lines associated with that
vertex [7, 8]. For external particles this wave function will simply be a spinor or polarisation vector
(e.g. u, v, e”,...). For internal particles this wave function will be a Lorentz or spinor contraction
of the other wave functions joining the vertex plus factors introduced by the particle’s propagator
and the vertex itself (according to the relevant Feynman rules).

Once the program reaches the final vertex, the wave functions connected to it (which contain
information from all the other wave functions) can be contracted to compute the final diagram
(also referred to as an amplitude). MG5aMC employs the helicity amplitude formalism and so
each wave function, and by extension each amplitude, is dependent on the helicities of the external
particles [9—11]. As such the matrix element must be summed over all combinations of external
particle helicities in order to get the final result. Here we present our work to greatly increase the
computational speed with which this sum is evaluated.

2.1 Implementation

Prior to the work of this project, MG5AMC would evaluate the matrix element independently
for each helicity combination. It is common for a given particle to appear with the same helicity in
multiple helicity combinations. This means MG5aMC would recalculate the same wave function
multiple times when performing the sum over helicities. This is a waste of computation. We have
restructured the MG5AMC code such that it can now identify duplicated wave functions and avoid
recalculating them. Instead, the wave function is calculated once, the result is stored as a float and
then the float is called upon when need be.

We found the most elegant way to implement this was to make use of a directed acyclic graph
(DAG). Each node in the graph is a wave function or amplitude evaluated at a given helicity combi-
nation and a connection between nodes implies dependency. As such, it becomes easy to determine

This scale is defined as the sum of jet pr

SingularPhasespace and helicity recycling in MadGraph5_aMC@NLO Kiran Ostrolenk

Process | Speed up Process Speed up Process Speed up
gg —1f | 1.36x 99 = W'W7qq | 1.67x qq — e*e” 1.02x
gg — tig 1.43x q9 > W*W7gg | 1.89x qq — ete g 1.03x
gg —tigg | 227X 88 > W'W7qq | 1.89x gg > eteqq | 1.09x
qq — tiqq 1.27x% gq — W*Wgq 2.13%x
(a) 17 processes. (b) pp — W*W~ jj processes. (€) €™ processes.

Table 1: The speed-up of the madevent binary thanks to helicity recycling. This speed-up is represented as
the ratio between the time taken without and with helicity recycling. Here g represents a sum over the light
quarks.

which wave functions contribute to which amplitudes and so avoid duplication. Furthermore, some
amplitudes will be zero for certain helicity combinations. This DAG allows us to also easily de-
termine which wave functions would contribute to these null-amplitudes and so avoid calculating
them. This adds further optimisation.

Finally, we were able to not only optimise wave functions calculations but also the calculation
of amplitudes. In general, part of the amplitude calculation will involve taking the Lorentz or spinor
product between two wave functions. If these two wave functions are repeated across multiple
helicity combinations then this mean we will evaluate the same product multiple times. As such
we were also able to recycle this part of the amplitude calculation. This optimisation is especially
important for processes with many diagrams such as those involving multiple gluons.

2.2 Results

The sum of all the optimisations detailed in section (2.1) is what we refer to as helicity recycling.
In this section we will show the resultant speed up of the code. We shall focus on the speed of the
madevent binary, responsible for generating phase-space points, evaluating the matrix element and
some other things such as evaluating the PDFs. Remember, helicity recycling only optimises the
matrix-element evaluation.

In table (1) we show the factor speed up of madevent thanks to helicity recycling. This speed
up is represented as the ratio between the time taken without and with helicity recycling. One can
see that the impact is highly processes dependent. This is because the more wave functions and
amplitudes there are to evaluate, the more the program can recycle. As such processes with many
and more complex diagrams see a higher speed up. Take for example the ¢7 processes in table (1a).
One can see how adding one and two extra gluons into the final state greatly increases the speed up,
from 1.36X% to 2.27x.

Notice though that the similar process gqqg — tfgqg sees a much more modest speed up of
1.27x. This is because this process is dominated by fermions. For such a process, there are
much fewer helicity combinations that contribute a non-zero matrix element. As such, the sum of
these combinations is much shorter and so it is responsible for a smaller percentage of the overall
computation.

SingularPhasespace and helicity recycling in MadGraph5_aMC@NLO Kiran Ostrolenk

We see a similar principle at play when looking at table (1b) and (1c). W bosons are not
fermions and produce complex diagrams, hence the processes involving them see a large speed up.
Electrons on the other hand are fermions and so processes involving them see an almost insignificant
speed up.

Notice that helicity recycling’s tendency to have a bigger impact on the more complex processes
is highly desirable. These processes are the ones that take the longest and so it is most efficient to
target them.

3. Conclusion

SingularPhasespace is a phase-space generator that allows users to see exactly how an NLO
algorithm behaves in the singular limits. These limits are where features of the code become
most exaggerated and so SingularPhasespace can help with diagnosing bugs and understanding
unexpected behaviour. This generator will be available in an upcoming release of Herwig.

We have also implemented a restructuring of MG5AMC that allows it to recycle parts of
the matrix-element calculation across the sum over helicity combinations. We have dubbed this
restructuring helicity recycling. The resultant speed up is highly processes dependent. For complex
processes one can see a speed up of ~2x whereas for simpler processes involving fermions the
factor is more modest. This tendency is desirable as the most complex processes are also the most
computationally intensive. A possible extension of this project would be to extend it from LO to
NLO processes. There the real matrix element dominates the computational cost and so there is
scope for a large improvement.

References

[1] A. Buckley et al., “General-purpose event generators for LHC physics,” Phys. Rept., vol. 504,
pp. 145-233, 2011.

[2] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer,
P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations,” JHEP, vol. 07,
p- 079, 2014.

[3] P. Nason, “A New method for combining NLO QCD with shower Monte Carlo algorithms,”
JHEP, vol. 11, p. 040, 2004.

[4] J. Bellm et al., “Herwig 7.2 release note,” Eur. Phys. J. C, vol. 80, no. 5, p. 452, 2020.

[S] M. Dobbs and J. B. Hansen, “The HepMC C++ Monte Carlo event record for High Energy
Physics,” Comput. Phys. Commun., vol. 134, pp. 4146, 2001.

[6] G. P. Salam, “Towards Jetography,” Eur. Phys. J. C, vol. 67, pp. 637-686, 2010.

[7] H. Murayama, I. Watanabe, and K. Hagiwara, “HELAS: HELicity amplitude subroutines for
Feynman diagram evaluations,” 1 1992.

SingularPhasespace and helicity recycling in MadGraph5_aMC@NLO Kiran Ostrolenk

[8] P.de Aquino, W. Link, F. Maltoni, O. Mattelaer, and T. Stelzer, “ALOHA: Automatic Libraries
Of Helicity Amplitudes for Feynman Diagram Computations,” Comput. Phys. Commun.,
vol. 183, pp. 2254-2263, 2012.

[9] P. De Causmaecker, R. Gastmans, W. Troost, and T. T. Wu, “Helicity Amplitudes for Massless
QED,” Phys. Lett. B, vol. 105, p. 215, 1981.

[10] P.De Causmaecker, R. Gastmans, W. Troost, and T. T. Wu, “Multiple Bremsstrahlung in Gauge
Theories at High-Energies. 1. General Formalism for Quantum Electrodynamics,” Nucl. Phys.
B, vol. 206, pp. 53-60, 1982.

[11] R. Gastmans, “THE HELICITY METHOD: A REVIEW,” AIP Conf. Proc., vol. 201,
pp. 58-72, 1990.

	SingularPhasespace
	Toy example

	Helicity recycling
	Implementation
	Results

	Conclusion

