
P
o
S
(
I
C
H
E
P
2
0
2
0
)
9
2
1

PDFFlow: hardware accelerating parton density access

Marco Rossi,𝑎,𝑏,∗ Stefano Carrazza𝑎 and Juan M. Cruz-Martinez𝑎
𝑎TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano
Via Celoria 16, 20133, Milano, Italy

𝑏CERN openlab, Geneva 23, CH-1211, Switzerland
E-mail: stefano.carrazza@mi.infn.it, juan.cruz@mi.infn.it,
marco.rossi5@unimi.it

We present PDFFlow, a new software for fast evaluation of parton distribution functions (PDFs)
designed for platforms with hardware accelerators. PDFs are essential for the calculation of
particle physics observables through Monte Carlo simulation techniques. The evaluation of a
generic set of PDFs for quarks and gluons at a given momentum fraction and energy scale
requires the implementation of interpolation algorithms as introduced for the first time by the
LHAPDFproject. PDFFlow extends and implements these interpolation algorithms usingGoogle’s
TensorFlow library providing the possibility to perform PDF evaluations taking fully advantage of
multi-threading CPU and GPU setups. We benchmark the performance of this library on multiple
scenarios relevant for the particle physics community.

40th International Conference on High Energy physics - ICHEP2020
July 28 - August 6, 2020
Prague, Czech Republic (virtual meeting)

1Preprint numbers: TIF-UNIMI-2020-31, CERN-IT-2020-001
∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:stefano.carrazza@mi.infn.it
mailto:juan.cruz@mi.infn.it
mailto:marco.rossi5@unimi.it
https://pos.sissa.it/

P
o
S
(
I
C
H
E
P
2
0
2
0
)
9
2
1

PDFFlow Marco Rossi

1. Introduction and motivation

Parton Distribution Functions (PDFs) are a core concept in High Energy Physics (HEP) phe-
nomenology: they provide a description of the parton content of the proton and enter the computation
of physical observables, like cross sections and differential distributions. PDFs are provided by
fitting collaborations, each following different techniques and methodologies [1–3]. Nonetheless, a
standard format [4] was agreed to be used by the community: PDF measurements are presented in
grids of values as functions of momentum fraction 𝑥 of a parton with flavor 𝑎 and energy scale 𝑄;
collections of such grids are usually called PDF sets.

The state of the art tool that allows access to PDF values is represented by the LHAPDF
library [5], whose algorithms ask as input a single query point in the (𝑎, 𝑥, 𝑄) space and output the
corresponding interpolated value from the PDF grid. We identify the intrinsic sequential nature of
the LHAPDF tool as the entry point of our research development: physical calculations are usually
performed via Monte Carlo (MC) simulations, see section 3.1, asking to produce a huge number
of independent phase space points; then, parallelizing such uncorrelated computations, may lead to
massive performance improvements, like in [6].

Moreover, in recent years the decreasing costs of hardware accelerators, such as GPUs, TPUs
and FPGAs, triggered a raising interest in the development of software and frameworks that tar-
get these platforms to reduce the computational burden of HEP phenomenological simulations.
VegasFlow [7, 8] is an excellent example of such approach: written in python, it leverages the
TensorFlow [9] framework to delegate the placement and management of tensors on hardware,
allowing the developer and the user to focus on the actual implementation of the tool, rather than
on the difficulties that may arise from programming directly into hardware specific languages.

Following the strategy introduced by VegasFlow , we present the PDFFlow library [10], where
the main contribution is a novel implementation of the PDF and 𝛼𝑠 interpolation algorithm used
in LHAPDF. Able to run both in CPUs and GPUs, it enables further acceleration for Monte Carlo
simulations. This paper is intended to reach users with a detailed review of PDFFlow usage and
examples of real physical use cases, along with a presentation of main benchmark results. The
paper is structured as follows: in section 2 we discuss technical implementation of the tool and its
comparison with the state of the art; section 3 overviews PDFFlow and VegasFlow integration into
real LHC physics simulations, sketching the idea that drives this computation and presenting two
complete examples; finally, section 4 wraps up our considerations and future work directions.

2. PDFFlow

2.1 Technical Implementation

The idea behind PDFFlow implementation is to mimic the LHAPDF interpolation algorithms
for PDFs evaluation, trying to parallelize as much as possible the computation and exploiting
TensorFlow library to be hardware agnostic, in order to benefit from running on a wide spectrum
of modern hardware. PDFFlow then, as opposite to LHAPDF, groups together multiple points
calculations, asking as inputs three arrays: a set of flavors {𝑎} and two arrays of the same length,
namely the fractions of momenta 𝑥𝑖 and energy scales 𝑄𝑖 respectively. The output of such query is
an array of PDF interpolated points 𝑓𝑖 .

2

P
o
S
(
I
C
H
E
P
2
0
2
0
)
9
2
1

PDFFlow Marco Rossi

from pdfflow import mkPDF
pdf = mkPDF(f"{pdfset}/0")
pdf.trace() # pdf initializer

pid = [-1,21,1] # anti-down, gluon, down flavors

x = [10**i for i in range(-6,-1)] # momenta fractions
q = [10**i for i in range(1,6)] # energy scales

f = pdf.py_xfxQ(pid, x, q)

###

from pdfflow import mkPDF
pdf = mkPDF(f"{pdfset}/0")
pdf.alphas_trace() # pdf initializer

q = [10**i for i in range(1,6)] # energy scales

alphas = pdf.py_alphasQ(q)

Figure 1: Interpolation example code. Top: PDF
interpolation. Bottom: 𝛼𝑠 interpolation. It’s good
practice to call the trace or alphas_trace initial-
izers the first time a PDF is created.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t[
s]

PDFflow - LHAPDF perfomances

PDFFlow: i9 9980XE (CPU)

PDFFlow: Titan V (GPU)

LHAPDF (CPU)

1 2 3 4 5 6 7 8 9 10

Number of (x,Q) points drawn [×105]

101

102

R
at

io
to

L
H

A
P

D
F

Figure 2: Performance benchmark. Top: absolute
execution time as a function of the query array length.
Bottom: time ratio between PDFFlow running on dif-
ferent platforms and LHAPDF. Note LHAPDF is sin-
gle thread, while PDFFlow exploits all available cores.

PDFFlow provides a user friendly python interface, where a PDF object is istantiated via a
mkPDF function, while the actual interpolation is called by the py_xfxQ PDF attribute method.
Figure 1 shows how a PDFFlow user may start an interpolation in their code.1 Analogous to
the PDF interpolation problem is the running of the strong coupling 𝛼𝑠 one. Like LHAPDF, we
implement this algorithm, whose usage is reported also in the figure.

2.2 Benchmarks

We present here benchmark results between PDFFlow v1.0 and LHAPDF v6.3.0 libraries.
While we refer to [11, section 3.2] for the accuracy performance, claiming a perfect agreement
between the two tools outputs, here we focus on the performance comparison. In figure 2 we
show the execution time as a function of the query array length. Different curves correspond to
different hardware setups: PDFFlow provides a good speed up while running on an Intel i9 CPU
(blue curve), showing a flat ratio factor varying between 3x and 4x. The behavior dramatically
improves when testing our tool on a Titan V GPU (orange curve), achieving a best improvement of
two orders of magnitude when we query 106 input points. The higher number of cores that compute
parallel operations in a GPU provides tremendous improvement, even with a non-GPU specifically
optimized code.

3. VegasFlow-PDFFlow usage and examples

3.1 Monte Carlo simulations use cases

Monte Carlo simulations represent a natural framework where a parallelized algorithm can
leverage all its capabilities, given that calculations involving different integration points are com-

1A complete "How to" documentation is available at the N3PDF/pdfflow repository.

3

https://github.com/N3PDF/pdfflow/tree/master/doc/source

P
o
S
(
I
C
H
E
P
2
0
2
0
)
9
2
1

PDFFlow Marco Rossi

pletely independent from each other. In this section we show how to exploit PDFFlow and
VegasFlow to compute cross sections at hadron colliders. The problem can be cast into the following
form:

Simulation Example

VegasFlow:

random gen
PDFFlow:

PDF eval

Event

kinematics

Matrix

element
Luminosity

Flux,

PS factors

VegasFlow:

integration

Integrand

Figure 3: PDFFlow flowchart. Blocks are color-
coded as following: white for tools implemented al-
gorithms, green for required example-dependent user-
defined functions.

𝜎𝑋 =

∫
𝑑𝑥1𝑑𝑥2

Φ

F

∑︁
𝑎,𝑏

(
L𝑎,𝑏 |M𝑎,𝑏→𝑋 |2

)
(1)

where the luminosity L accounts for the PDFs,
thematrix elementM describes the hard interac-
tion, while F and Φ are the flux and phase space
factors, respectively. This integral can be eval-
uated numerically exploiting VegasFlow and
PDFFlow tools. The general implementation
scheme is presented in figure 3.

The user has to define an Integrand func-
tion that will be called by VegasFlow at inte-
gration time, returning the process cross section
and its uncertainty. This function encodes the
process-specific physical factors we highlighted
in equation (1): it must take as input an array of
random numbers, provided by VegasFlow , and
output the function to be integrated, evaluated at
those points. In order to build this function, the user must convert the plain random numbers into
physical variables, like 𝑥1,2, that describe the event kinematics. Note that, in this step, the jacobian
factor of the trasformation must be taken into account to obtain the correct result. After having
reconstructed the kinematics, one must compute the matrix element plus the flux and phase space
factors. These ingredients in turn must be combined with the proper luminosity function, computed
evaluating the PDFs at the correct (𝑥, 𝑄2) points by means of PDFFlow xfxQ2.

3.2 Single top @ LO

As a basic example, we consider the single-top production at leading order (LO) in proton-
proton collisions through the exchange of a 𝑊 boson in the 𝑡−channel. Figure 4 instructs the
fundamental steps required to build the example code2.

In figure 5 we show the performance comparison between VegasFlow-PDFFlow , running
on multiple hardware setups, against fixed order calculation at LO with MG5_aMC@NLO [12]
software. We stop both the integrations when the total number of generated events allows to achieve
a precision better than 2 ·10−3pb (relative error of 4 ·10−5) on the output cross section. The bar chart
underlines how our parallelized approach grants a great speed up against the baseline algorithm.
The picture is even more extreme when running on GPU.

2The entire code is publicly available inside the N3PDF/pdfflow repository.

4

https://github.com/N3PDF/pdfflow/blob/master/benchmarks/singletop_lo.py

P
o
S
(
I
C
H
E
P
2
0
2
0
)
9
2
1

PDFFlow Marco Rossi

import tensorflow as tf
from vegasflow import vegas_wrapper
from pdfflow import mkPDF
...

p = mkPDF(pdfset, DIRNAME) # build PDF

...

@tf.function

def get_x1x2(xarr):
""" Maps vegas random points to x1,x2

Returns: partonic center of mass energy,

jacobian, x1, x2 """

...

return shat, jac, x1, x2

@tf.function

def make_event(xarr):
""" Returns the kinematics:

psw, p0, p1, p2, p3, p4, x1, x2 """

shat, jac, x1, x2 = get_x1x2(xarr) # transformation

return build_kinematics(shat, jac, x1, x2)

@tf.function

def build_luminosity(x1,x2):
q2s = tf.ones_like(x1)*mt2 # eval PDFs at top mass squared

p5x1 = pdf.xfxQ2([5], x1, q2s) # bottom PDFs

pNx2 = pdf.xfxQ2([2, 4, -1, -3], x2, q2s) # u, c, dx, bx PDFs

lumis = muliplyPDFs_and sum(p5x1, pNx2)

return lumis / x1 / x2

@tf.function

def singletop(xarr):
""" Input: xarr, vegas random points"""

psw, flux, p0, p1, p2, p3, x1, x2 = make_event(xarr)

wgts = evaluate_matrix_element_square(p0, p1, p2, p3)

lumi = build_luminosity(x1,x2)

lumi_ME = combine_lumi_ME(lumi, wgts)

return psw * flux * lumi_ME

r = vegas_wrapper(singletop, dim, n_iter, ncalls, compilable=True)

Figure 4: Code for single-top production in 𝑡−channel at LO: singletop function evaluates the integrand
and is passed as a parameter to vegas_wrapper function; PDFFlow enters in the luminosity computation.

3.3 VFH @ NLO

Monte Carlo calculations become exponentially more and more expensive in terms of compu-
tational and human efforts at higher orders in perturbation theory. This added complexity provides
a perfect benchmarking ground for assessing the GPU acceleration of our models. In particular,
we test VegasFlow-PDFFlow setup against a simplified version of the existing Fortran 95 NNLO-
JET [13] implementation of the vector boson fusion for Higgs production (VFH) at NLO. In this
picture we consider only the quark initiated W-boson mediated process, eventually with a gluon
emitted from any of the quarks at NLO.

We collect performance results in figure 6, evaluating algorithms on multiple platforms. The
stopping criteria for the integrators is set to per-mille precision at LO and percent at NLO in 10
iterations. Although NNLOJET code is highly optimized for CPU and CPU-cluster usage, we
observe that our tool, with little to no specific GPU optimization, outperforms the baseline both for
LO and NLO accuracy.

4. Conclusions

Porting PDFs to GPU is an essential step in order to accelerate Monte Carlo simulation by
granting to the HEP community the ability to implement with simplicity particle physics processes
without having to know about the technicalities or the difficulties of their implementation on multi-
threading systems or the data placement and memory management that GPU and multi-GPUs
computing requires.
PDFFlow is designed to work in synergy with the LHAPDF library, therefore it uses exactly

the same PDF data folder structure, and interpolation algorithms for the PDF and 𝛼𝑠 determination.
While the current release of PDFFlow has only been tested in GPUs and CPUs showing great
performance improvements, we believe that investigation about new hardware accelerators such as
Field Programmable Gate Arrays (FPGA) and Tensor Processing Units (TPUs) could provide even
more impressive results in terms of performance and power consumption.

5

P
o
S
(
I
C
H
E
P
2
0
2
0
)
9
2
1

PDFFlow Marco Rossi

0 5 10 15 20 25
Time (minutes)

MG5_aMC@NLO
36 active CPU cores

VegasFlow
36 active CPU cores

VegasFlow
Titan V

VegasFlow
RTX 2080 Ti

VegasFlow
Titan V and RTX 2080 Ti

LO single top @ 8 TeV, target uncertainty 0.002 pb
 Intel(R) Core(TM) i9-9980XE CPU @ 3.00GHz

Figure 5: Total integration time comparison between
VegasFlow-PDFFlow andMG5_aMC@NLO at LO.
Software always runs on a single node, eventually
exploiting multiple gpus.

0 10 20 30 40

Time (seconds)

NNLOJET+LHAPDF
Intel i7

VegasFlow+PDFFlow
RTX 2080 Ti

NNLOJET+LHAPDF
Amd 2990WX

VegasFlow+PDFFlow
2x V100

VegasFlow+PDFFlow
TITAN V

6.5

0.42

1.05

0.53

0.34

46

15.2

10.1

7.4

5.1

MC integration of VFH Higgs @13 TeV µF = pT,j1

VFH LO

VFH NLO

Figure 6: Time per iteration comparison of
VegasFlow-PDFFlow and NNLOJET at NLO.
NNLOJET algorithm allows parallel computing, ex-
ploiting all available CPU cores.

Acknowledgments

The authors are supported by the European Research Council under the European Union’s
Horizon 2020 research and innovation Programme (grant agreement number 740006) and by the
UNIMI Linea 2A grant “New hardware for HEP”.

References
[1] NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C77 (2017) 663 [1706.00428].

[2] T.-J. Hou et al., New CTEQ Global Analysis with High Precision Data from the LHC, 1908.11238.

[3] L. A. Harland-Lang, A. D. Martin, P. Motylinski and R. S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs,
Eur. Phys. J. C75 (2015) 204 [1412.3989].

[4] M. Whalley, D. Bourilkov and R. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, in HERA and the LHC: A
Workshop on the Implications of HERA and LHC Physics (Startup Meeting, CERN, 26-27 March 2004; Midterm Meeting,
CERN, 11-13 October 2004), pp. 575–581, 8, 2005, hep-ph/0508110.

[5] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht et al., LHAPDF6: parton density access in the LHC
precision era, Eur. Phys. J. C 75 (2015) 132 [1412.7420].

[6] J. M. Campbell, R. K. Ellis and W. T. Giele, A Multi-Threaded Version of MCFM, Eur. Phys. J. C75 (2015) 246 [1503.06182].

[7] S. Carrazza and J. M. Cruz-Martinez, VegasFlow: accelerating Monte Carlo simulation across multiple hardware platforms,
Comput. Phys. Commun. 254 (2020) 107376 [2002.12921].

[8] J. Cruz-Martinez and S. Carrazza, N3pdf/vegasflow, Feb., 2020. 10.5281/zenodo.3691926.

[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro et al., TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015.

[10] J. Cruz-Martinez, M. Rossi and S. Carrazza, N3pdf/pdfflow, July, 2020. 10.5281/zenodo.3964191.

[11] S. Carrazza, J. M. Cruz-Martinez and M. Rossi, PDFFlow: parton distribution functions on GPU, 2009.06635.

[12] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., The automated computation of tree-level and
next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079
[1405.0301].

[13] J. Cruz-Martinez, T. Gehrmann, E. Glover and A. Huss, Second-order QCD effects in Higgs boson production through vector
boson fusion, Phys. Lett. B 781 (2018) 672 [1802.02445].

6

https://doi.org/10.1140/epjc/s10052-017-5199-5
https://arxiv.org/abs/1706.00428
https://arxiv.org/abs/1908.11238
https://doi.org/10.1140/epjc/s10052-015-3397-6
https://arxiv.org/abs/1412.3989
https://arxiv.org/abs/hep-ph/0508110
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://arxiv.org/abs/1412.7420
https://doi.org/10.1140/epjc/s10052-015-3461-2
https://arxiv.org/abs/1503.06182
https://doi.org/10.1016/j.cpc.2020.107376
https://arxiv.org/abs/2002.12921
https://arxiv.org/abs/2009.06635
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://doi.org/10.1016/j.physletb.2018.04.046
https://arxiv.org/abs/1802.02445

	Introduction and motivation
	PDFFlow
	Technical Implementation
	Benchmarks

	VegasFlow-PDFFlow usage and examples
	Monte Carlo simulations use cases
	Single top @ LO
	VFH @ NLO

	Conclusions

