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event reconstruction software matching the reduced statistical errors and increased and precision
of new detectors. Here we present progress for the software of the Hyper-Kamiokande experiment
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reconstruction using traditional techniques as well as new developments using modern machine-
learning based approaches.
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1. Introduction

Hyper-Kamiokande [1] (HK) is the next generation water-Cherenkov neutrino experiment,
building upon the success of Kamiokande, Super-Kamiokande (SK) and T2K. The physics program
includes neutrino oscillation and neutrino astrophysics by observing accelerator, atmospheric, solar,
and supernova neutrinos, as well as extended proton decay searches using the large amount of water
in the tank. The experiment is planned to start operation in 2027 and will involve two new water
Cherenkov detectors.

Construction has started recently on the far detector, consisting of a 258 kt total (188 kt fiducial)
volume of ultra-pure water surrounded by approx. 40% coverage of 50 cm PMTs. With about 8x
larger fiducial volume than SK it will benefit from significantly increased statistics, but also new
photosensor technology will provide improved photo-efficiency and timing resolution.

An intermediate water Cherenkov detector (IWCD), based on the nuPRISMproposal [2], is also
planned to be constructed approx. 1 km from the source of the J-PARC neutrino beam, to measure
the flux and cross-section of beam neutrinos using the same target and detector technologies as
the far detector. The IWCD will consist of a ∼1 kt volume of water with approx. 500 multi-PMT
(mPMT) modules, each containing 19 8 cm PMTs, that provide improved position, direction and
timing information over the 50 cm PMTs, allowing the smaller scale IWCD to achieve equivalent
precision to the far detector. The IWCD detector volume will be able to move vertically within a
50 m tall pit, allowing measurements at different off-axis angles providing different neutrino energy
spectra.

In order to exploit the new detector technologies and capabilities, improved simulation and
reconstruction software is required, with development focusing on flexibility to simulate and recon-
struct events with different detector geometries and configurations, to aid detector design optimisa-
tion studies and provide a consistent framework across different detectors.

2. Simulation software

The water Cherenkov detector simulation software of HK is called WCSim [3]. This open-
source package is based on Geant4 [4] and provides a fast, flexible and consistent simulation
framework where the detector geometry can be configured to allow its use for both the far detector
and IWCD as well as other water Cherenkov detectors. The products of neutrino interactions,
or of background events, are tracked through the detector, simulating all interactions within the
detector volume, until any optical photons hit the PMT glass. The response of the PMTs to thse
photons are then simulated along with the electronics, triggering and data acquisition. Both the true
and digitised PMT hit times and charges are recorded, along with additional true particle tracking
information, to be used in reconstruction software tuning as well as physics analysis. The triggering
and DAQ simulations can also be simulated separately using the ToolDAQ [5] package, which is
able to use the same code for simulation as is used in the actual DAQ electronics.
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3. Reconstruction software

3.1 Low-energy reconstruction

The reconstruction of low-energy events, where few PMTs are hit and each hit generally
corresponds to only one photoelectron, is based on the hit timing information. Single Cherenkov
rings are reconstructed assuming a point source of light, coming from the vertex position (®E) that
maximises the following goodness function 6(®E),

6(®E) =
#∑
8=1

F8 exp

(
−0.5

(
C8 − | ®G8 − ®E |/2F0C

f

)2
)
, (1)

where C8 and ®G8 are the times and positions respectively of the # hit PMTs, F8 are Gaussian hit
weights, 2F0C is the speed of light in water and f is the PMT timing resolution. The direction
is reconstructed using a circular KS test of the pattern of hits around the Cherenkov cone, and
the reconstructed energy scales with the number of hits observed around the expected timing at
each PMT. The software used for SK, known as BONSAI, has been adapted and tuned for the HK
detectors, while a newmore modern and flexible framework, known as LEAF, is under development
with a new optimisation algorithm but otherwise currently using the same reconstruction algorithms
as BONSAI. Figure 1 shows the reconstructed position resolutions for different configurations of
the far detector, each configuration having been simulated with WCSim and reconstructed using
BONSAI.

Figure 1: Low energy reconstructed position resolutions for various configurations of the HK far detector.
Left: resolutions for 20%, 30% and 40% photocoverage (PC) for PMTs with 4.2 kHz or 8.4 kHz dark rate
(DR). Right: resolutions for various combinations of 50 cm box and line (B&L) PMTs with mPMTs.

3.2 High-energy reconstruction

The high-energy event reconstruction software for HK is called fiTQun and was originally
developed for SK, based on the algorithm used for MiniBooNE [6]. The event hypothesis G
comprises of the unknown position, direction and energy for a given particle type. These unknowns
are reconstructed using the full information of time and charge from both unhit and hit PMTs, by
finding the hypothesis G that maximises the likelihood ! (G),

! (G) =
#D=ℎ8C∏
9=1

% 9 (D=ℎ8C |G)
#ℎ8C∏
8=1

%8 (ℎ8C |G) 5@ (@8 |G) 5C (C8 |G), (2)
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where % 9 (D=ℎ8C |G) are the probabilities of the #D=ℎ8C PMTs being unhit, %8 (ℎ8C |G) are the probabil-
ities of the #ℎ8C PMTs being hit, 5@ (@8 |G) are the probability densities of the hit PMTs’ charges @8
and 5C (C8 |G) are the probability densities of the hit PMTs’ times C8 , all assuming a given hypothesis
G. Each of the probabilities in Eq. 2 is determined by combining the expected direct light as well as
scattered and reflected light reaching each PMT. These are tuned to each detector geometry using
simulated events for each particle type being considered, and the reconstructed particle type is
determined using the ratio of the maximum likelihoods obtained when assuming each particle type.
Figure 2 shows the reconstructed position resolutions for different configurations of the IWCD, each
configuration having been simulated with WCSim and reconstructed using fiTQun.

Figure 2: Resolutions for high-energy position reconstruction for electrons (left) and muons (right) for
various configurations of the IWCD.

Neutral pions form a significant backgroundwhen the c0 decays to two largely co-linear gammas
producing electromagnetic showers that appear similar to the signal from electrons produced by a4
events. To distinguish neutral pions from electrons, a 2D cut is applied using the likelihood ratio
together with the reconstructed c0 mass. Figure 3 shows the separation of c0 background and a4
signal using these outputs from fiTQun.
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Figure 3: c0 rejection cut (red line) with events above the line rejected as background against the a4 signal
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3.3 Machine Learning

Traditional reconstruction software like fiTQun is beginning to reach the limit of the achievable
reconstruction precision; to improve further, more complex likelihood functions would be required
after relaxing some of the assumptions made in their current construction. But this would result in
increased computational complexity, with reconstruction already the most intensive part of the full
software chain. For larger detectors with a larger number of PMTs, the computation time is already
increased and so alternative methods are being explored.

Machine learning (ML) has been revolutionary in the field of computer vision and is now also
becoming common throughout HEP applications. ML has the potential for reconstruction to use all
information without making physics assumptions beyond those of the simulation software used to
train the models. Additionally, once trained these models use far less computational resources to
reconstruct events. The WatChMaL organisation was formed to facilitate development of machine
learning reconstruction for water Cherenkov detectors, including HK’s far detector and IWCD. For
the IWCD, initial studies have begin to explore particle type classification using various neural
network architectures.

Inspired by the revolutionary success of convolutional neural networks (CNNs) in image
processing [7], a CNN based on ResNet [8] has been developed to distinguish muon, electron and
gamma events in the IWCD. The input to the network is a 40x40 pixel image containing both the
barrel and end-caps mPMTs of the detector; each pixel corresponds to a single mPMT with 38
channels for the time and charge of each of the 19 PMTs. The network architecture is equivalent
to the ResNet-18 architecture with an additional 1 × 1 pixel (single mPMT) convolution layer over
the initial 38 channels, corresponding to a convolution of the times and charges of the 19 PMTs in
each mPMT. The network was trained on 9 million simulated single-ring events, 3 million of each
particle type, with uniform random energies from 0 to 1 GeV above Cherenkov threshold, uniform
random position inside the detector volume and isotropic random direction. Figure 4 demonstrates
significantly improved discrimination of muon rings and electron rings using the ResNet CNN
compared to fiTQun reconstruction, as well as some statistical separation of electron and gamma
rings that fiTQun has not yet been able to successfully discriminate.

Figure 4: Left: Muon background rejection performance of ResNet-based CNN and fiTQun for fixed
electron signal efficiency of 80%. Right: Electron rejection performance of ResNet-based CNN with fixed
gamma efficiency of 80%.

These results usingCNNs are encouraging, however the unwrapping of the cylindrical geometry
onto a flat square image does not preserve the true geometrical topology of the detector, potentially
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limiting the ability of the network to generalise and provide optimal reconstruction performance.
To address this, several methods are under investigation that correctly apply to the cylindrical
geometry. The PointNet [9] architecture, which takes points (PMTs) in 3D space, together with
features (time and charge) at each point has been adapted and is showing comparable performance to
the ResNet CNN. Graph convolutional networks [10] are also being investigated, along with a newly
developed method using a topology-preserving map of the cylindrical surface onto a rectangular
grid image for input into a CNN architecture. The latter has been applied to reconstruction of
energy, position and direction with initial results giving similar reconstruction performance to
fiTQun. Additional development is underway towards the use of generative networks [11] for
a hybrid reconstruction method using ML generated likelihoods with fiTQun-like reconstruction
algorithms. Generative adversarial networks [12] are also being investigated for improving detector
simulations and treatment of systematics.
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