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We show that it is possible to reduce the size of a classification problem by automatically ranking
the relative importance of available features. Variables are importance-sorted with a decision tree
algorithm and correlated ones are removed after ranking. The selected features can be used as
input quantities for the classification problem at hand.

We tested the method with the case of highly boosted di-jet resonances decaying to two b-quarks,
to be selected against an overwhelming QCD background with a Deep Neural network. We make
it explicit the relation between different importance rankings obtained with different algorithms.
We also show how the signal-to-background ratio changes, varying the number of features to feed
the Neural Network with.
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1. Introduction

In current and future high-energy physics experiments, the sensitivity of selection-based anal-
ysis will increasingly depend on the choice of the set of high-level features determined for each
collision. The complexity of event reconstruction algorithms escalated in the last decade and thou-
sands of parameters, often correlated to each other, are available for the analysts. An example is
the set of observables associated with tracks, both of instrumental and algorithmic origin. Training
multivariate algorithms with all available features is often impossible, due to lack of calibration or
computing power limitations. In addition, it is known that increasing the dimensionality of a clas-
sification problem, not always increases the performance of the model. This issue is often referred
to as the "curse of dimensionality" [1]. Moreover, the higher is the complexity of the problem we
want the model to learn, the longer the training will take. Therefore, it is always desirable to reduce
the number of input observables. Nevertheless, such reduction is often pursued by trial and error,
without a systematic approach guaranteeing that that particular set of observables is the optimal
one available at hand. There is a need for a robust method, allowing to control the selection of
features, to account for their correlation, as well as to evaluate gains and losses in sensitivity when
uncertainties are taken into consideration.

We propose here a possible method based on ranking the importance of observables, i.e. their
weight on the predictive power of the model, and estimating the performance of the model versus
the number of considered features.

2. Automated feature selection
The automated feature selection procedure can be divided into three main steps.

1. Preliminary steps: selections are applied to the raw dataset and the main starting variables
are selected. At this stage, any prepossessing can be applied to the dataset.

2. Feature ranking extraction: after having chosen a machine learning algorithm capable
to rank features, different models are trained using cross validation. The final ranking is
produced by ordering the variables by the mean value of all the obtained rankings. This
procedure furnishes an estimate of the ranking position uncertainty.

3. Correlated variable removal: it is expected to have highly correlated variables close in
positions in the feature ranking. Removing correlated variables improves the significance
and prevents introducing undesired noise. A threshold on the correlation value is defined and
correlated variables are removed following the obtained feature ranking.

After this procedure, the data-set is ready to be used to train the final model. In the following,
we show an example of the application of the automated feature selection for the specific case of
tagging events containing a boosted Higgs boson decaying to two b quark in a proton-proton (pp)
collision experiment.
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3. Benchmark application: Boosted H — bb tagging

The problem of tagging events containing a boosted Higgs boson decaying to two b-quarks is
chosen as a benchmark for the feature selection procedure. This represents an appealing channel
to study Higgs boson properties since it accounts for 58% of the total Higgs boson decays [2].
However, in pp collision experiments, it is not easy to distinguish these events against the huge
irreducible background coming from QCD multi-jet production [3]. In this regime, the Higgs
decay products are very collimated and it is not always possible to resolve the di-jet structure [4].
Therefore a single large and massive jet containing both the b quark originated jets is reconstructed.
Moreover it is expected to observe larger deviations from Standard Model prediction in the boosted
regime [5]. Given the importance of the process, we developed an H — bb tagger for pp collision
experiments based on a deep neural network to identify jets that contain both the b-quarks from
boosted Higgs decay.

3.1 Simulated data and object reconstruction

The dataset is produced using a fast and reliable framework developed by combining tools such
as Pyhtia8 [6], to generate high-energy physics events, Delphes [7], to mimic the detector response
and RAVE [8] for secondary vertex reconstruction. We reconstruct large radius anti-kT jets [9]
(large-R jets) with R = 1 and variable radius track jets [10] with Ryax = 0.4, Ryan = 0.02 and
p = 30. For the large-R jets, we defined kinematic variables, plus 11 jet substructure variables.
For the variable R track jets we defined kinematic variables plus the b-tagging information and 5
variables connected to the secondary vertex. We selected large-R jets with pr > 450Gev/c? and
n < 2. Then we look for the 2 highest pr track jets contained in a selected large-R jet. We produced
the simulation on a Microsoft Azure Virtual Machine with 6 CPUs core and 56 GB RAM and 1
NVIDIA K80 GPU board.

3.2 Feature ranking

Given the generated data, we move to rank features. We present a comparison between
the results obtained with two different tree based algorithms: CATBOOST [11] and Random
Forest [12]. To extract the ranking, we performed a 10-fold cross validation training. Then, we
ordered the variables by the median value of the obtained importance. Random Forest orders
features by measuring Gini importance [13], while CATBOOST measures how much on average
the prediction changes if the feature value changes: the bigger the value of the importance the
bigger on average is the change in the predicted value. We compared the ranking obtained with the
two algorithms by producing the scatter plot in Fig 1. Clusters of variables with compatible feature
importance are highlighted. On the top right of the plot it is possible to distinguish the red cluster that
corresponds to the most important variables. On the bottom left there is a green cluster, containing
the least relevant variables for both the algorithms. The presence of these clusters is important
because it shows how similar are the rankings obtained with these two different algorithms. In the
future we plan to compare these results with other non-tree based algorithms.
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Figure 1: Comparison between feature importance obtained with Random Forest and CATBOOST. On x
axis we have RF importance while on y axis we have the CATBOOST one.
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Figure 2: CATBOOST feature ranking before (left) and after (right) correlated variables removal. Red
points has importance median greater than 0.04, orange points between 0.04 and 0.02, while green points
below 0.02.

3.3 Correlated variable removal

After having fixed the ranking, we proceed with the removal of correlated variables. We
computed the feature correlation matrix by evaluating the Pearson correlation coefficients [14] and
we removed correlated variables following the order defined by the feature ranking. It is expected
that correlated variables occupy close position in the feature ranking. Indeed, Fig. 2 shows how, after
removing correlated variables, the width of the plateaus in the feature ranking plot, that corresponds

to features that share common relevance, are reduced in width.
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Figure 3: Background rejection rate versus Higgs tagging efficiency with large-R jets. (left) Comparison
between different models trained adding variables as ranked by CATBOOST algorithm. (right) Comparison
with a model trained using the best 3 ranked variable plus 10 random variables is shown.

3.4 Training of the Neural network classifier

After all the steps above described, we move to train the final model. We choose a deep neural
network with fully connected layers. We built 6 hidden layers with 128 nodes per layer and SELU
activation function [15]. The output of the network will be a number between 0 and 1 so that it
will be possible to choose a working point for Higgs tagging efficiency. The framework used to
develop and train the classifier is Pytorch [16]. We optimized the neural network architecture, i.e.
number of hidden layers and nodes, when using all the features. Then, we changed the input layer
size according to the number of selected variables while keeping the hidden network architecture
constant.

3.5 Results

Fig. 3 shows the performances of different models trained by varying the number of input
features . Performances are evaluated by looking at the Higgs tagging efficiency against background
rejection. Each point on the plot is obtained by varying the threshold on the output of the classifier.
The blue line corresponds to the model trained using all the 42 available variables. The plot on the
right shows how, adding variables to the model, improves the background rejection rate at a fixed
Higgs tagging working point. The improvements reduce in size after having reached variable 13 (red
line), which has performances compatible with the complete model within 6%. In order to assess
the relevance of the ordering, we also produced a model trained using the first 3 non correlated
variables from the feature ranking and we added 10 random variables from all the remaining ones.
The performances of this model are shown in the right side plot of Fig. 3 (red line). This model
is performing 10% worse than the model trained with the first 13 variables (orange line) at almost
every working point.
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4. Conclusion

We showed a possible approach for feature selection, containing the most relevant non-
correlated features as ranked by a decision tree algorithm. We chose as a benchmark model
the tagging of large-R jets that contain both the b-quarks coming from the Higgs boson decay,
against the QCD jets originated in pp collisions. We showed that two different rankings obtained
using different algorithms, i.e. CATBOOST and Random Forest, share common features as the
most and least relevant features. An estimate of the stability of the ranking can be obtained by
running a n-fold (in this work n = 10) cross validation training. We showed that the feature ranking
obtained using the decision tree-based algorithm can be consistently applied to a neural network-
based classifier. Indeed, using the most important features allows to perform as efficiently as the
complete model within a few percent: little or no improvement is obtained by adding the lowest
ranked features. The automated feature selection is shown in action starting from 42 variables, but
it is easily scalable to a larger number of variables. Other ranking algorithms are currently under
test for a generalization of the method.
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