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A gauge invariant description of phase transitions
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Phase transitions are of wide interest to be sure, whether it’s in superconductors or the early
universe: Beyond the Standard Model scenarios like Baryogenesis cry out for a strong first-order
phase transition. So a precise description of phase transitions is vital. Phase transitions are, in
field theory, studied with numerical methods (lattice) and perturbative calculations (the effective
potential). Perturbative calculations are quite handy since lattice calculations are as yet rather
resource expensive. But perturbative calculations face a number of obstacles, to wit the expansion
breaks down at high temperatures and is gauge dependent. The former problem is often remedied
by a resummation; though, this resummation isn’t gauge invariant. And so we will present a gauge
invariant method for describing phase transitions using the effective potential. This method also
allays the high-temperature breakdown through a gauge invariant resummation

40th International Conference on High Energy physics - ICHEP2020
July 28 - August 6, 2020
Prague, Czech Republic (virtual meeting)

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:andreas.ekstedt@ipnp.mff.cuni.cz
mailto:johan.lofgren@physics.uu.se
https://pos.sissa.it/


P
o
S
(
I
C
H
E
P
2
0
2
0
)
6
7
8

A gauge invariant description of phase transitions Andreas Ekstedt

1. The Electroweak Phase Transition
The electroweak symmetry was unbroken in the inchoate universe, not so much in our current

day and age. Moments after the Big Bang the Higgs field broke the electroweak symmetry. An
event known as the electroweak phase transition. But this phase transition is not merely interesting
for its own sake but can also shed light on the matter-antimatter asymmetry problem. For potential
solutions to the matter-antimatter asymmetry must fulfil three conditions. One of these is a loss of
thermal equilibrium. Such a loss of thermal equilibrium can be initiated by a strong electroweak
phase transition—occurring via bubble nucleation. The electroweak symmetry is exact outside the
bubbles, while on the inside the symmetry is broken. Particles swept up by the bubbles get out of
thermal equilibrium and an asymmetry can be generated.

2. Phase Transitions
Calculations of phase transitions are arduous. Especially when including higher-order correc-

tions. Here the effective potential is the method of choice, but this quantity is notoriously slippery
to work with. Common issues are infrared-divergences, gauge dependence, and a slow convergence.
Many of these problems stems from not finding the different ground states consistently. In this paper
we consider a strict power-counting whereupon these issues disappear.

2.1 The Effective Potential
The effective potential𝑉 (𝜙) is the energy density in the presence of a constant scalar background

𝜙. And we consider a perturbative expansion of the form

𝑉 (𝜙) = 𝑉0(𝜙) + ℏ𝑉1(𝜙) + ℏ2𝑉2(𝜙) + . . .

The leading-order contribution, 𝑉0(𝜙), is here the tree-level potential. Higher-order corrections are
obtained from vacuum Feynman diagrams in the 𝜙 background.

Yet gauge bosons require gauge-fixing; the choice of gauge fixing should not affect physi-
cal observables. Indeed, the effective potential’s gauge dependence is described by the Nielsen
identity [1] (

𝜉𝜕𝜉 + C(𝜙, 𝜉)𝜕𝜙
)
𝑉 (𝜙) = 0.

Thus extremal points of the effective potential are gauge independent order-by-order in ℏ. Yet there
can be artificial gauge dependence if the potential is not minimized consistently. Below we describe
a gauge-independent method.

Loop-Induced Phase Transitions
The schematic expansion of 𝑉 (𝜙) in powers of ℏ is not appropriate for large temperatures. For

at these large temperature one-loop terms compete with tree-level ones. For high temperatures the
potential is of the schematic form [2]

𝑉 (𝜙) ∼ 𝑚2
eff(𝑇)𝜙

2 − 𝑔3𝑇𝜙3 + 𝜆𝜙4. (1)

A first-order transition occurs when 𝜙 ∼ 𝑒3

𝜆
𝑇 and 𝑚2

eff(𝑇) ∼ 𝑒6

𝜆
𝑇2. There are problems if 𝜆

scales as 𝑒2 or 𝑒4 [2], so we choose 𝜆 ∼ 𝑒3. These assumed scalings imply that vector, and scalar,
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Figure 1: Comparison of the gauge-independent and gauge-dependent method in the Standard Model. The
tree-level Higgs mass is set to 𝑚𝐻 = 45 GeV. Panel (a) shows the critical temperature and panel (b) shows
the phase transition strength.

boson self-energies are of the same order as their tree-level masses: they need to be resummed
𝑚2

𝑋
→ 𝑚2

𝑋
+ 𝑇2Π𝑋 . Where Π𝑋 is the self-energy coming with 𝑇2 for a particle 𝑋 .

With this counting we write the effective potential as 𝑉 = 𝑉LO + 𝑒𝑉NLO + 𝑒2𝑉NNLO + . . ., where
we take 𝑒 as the powercounting parameter. The gauge-invariant minimum is then [3]

𝜕V = 𝜕

(
𝑉LO + 𝑒𝑉NLO + 𝑒2𝑉NNLO + . . .

)
|𝜙=𝜙𝑚

= 0, 𝜙𝑚 = 𝜙LO + 𝑒𝜙NLO + . . .

𝜕𝑉LO |𝜙=𝜙LO = 0, 𝜙NLO = −𝜕𝑉NLO

𝜕2𝑉LO
|𝜙=𝜙LO , . . .Vmin = (𝑉LO + 𝑒𝑉NLO + . . .) |𝜙=𝜙LO

This procedure is gauge-invariant and consistent if masses are appropriately resummed.
Likewise, if we denote the energy of the symmetric phase (𝜙 = 0) by𝑉𝐴, and that of the broken

phase by 𝑉𝐵, the critical temperature where these two phases overlap is

Δ𝑉 ≡ V𝐴 − V𝐵, 𝑇𝑐 = 𝑇LO + 𝑒𝑇NLO + . . . , Δ𝑉 |𝑇 =𝑇𝑐
= 0

Δ𝑉LO |𝑇 =𝑇LO = 0, 𝑇NLO = − Δ𝑉NLO
𝜕𝑇Δ𝑉LO

, . . .

The critical temperature can then be used to calculate observables such as the phase-transition
strength. Results of these calculations are shown for the critical temperature in figure 1. In these
plots we compare the gauge-invariant method in this paper to a gauge-dependent method where the
effective-potential is not minimized consistently. From this figure we see that the gauge-dependence
for the critical temperature is rather small, while other observables, like the phase-transition strength
or the latent heat, depend more on the gauge-fixing parameter.
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