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We propose a scenario where the effects of dislocations, in bidimensional Dirac materials at low
energies, can be described within a Dirac field theory by a vertex proportional to the totally anti-
symmetric component of the torsion generated by such dislocations. The well-known geometrical
obstruction to have a nonzero torsion term of that kind in this two-dimensional settings is over-
come through exotic time-loops, obtained from ingeniously manipulated particle-hole dynamics.
If such torsion/dislocation is indeed present, a net flow of particles-antiparticles (holes) can be
inferred and possibly measured. Finally, we comment on how these discoveries pave the way
to a laboratory realization on Dirac materials of Unconventional Supersymmetry, as a top-down
description of the 𝜋-electrons in backgrounds with a nonzero torsion.
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1. Torsion and time loops in two-dimensional Dirac materials

In General Relativity (GR) curvature is related to the energy content of the spacetime. In
alternative theories, torsion, instead, is intimately related to spin [1]. In Einstein-Cartan theory,
which is somehow the minimal extension of GR to include torsion, the very existence of spinors
produce a torsion field. While other theories as Supersymmetry (SUSY) in curved space, that
is Supergravity (SUGRA), as well as the more recent unconventional SUSY (USUSY) [2], make
extensive use of torsion. In condensed matter, the unavoidable existence of defects in crystals,
such as disclinations and dislocations, makes natural to include both curvature and torsion in the
geometric, continuous description of the elastic properties of materials [3].

In recent years, due to the structure of their low energy spectrum, Dirac materials [4] have
emerged as experimental playgrounds where the fundamental research and the condensed matter
one, met. In particular, the role of disclinations is under intense investigation, to realize analogs of
Dirac quantum fields in curved spacetimes, see, e.g., [5, 6].

If we were able to explore this possibility in two-dimensional Dirac materials, it would be an
invaluable help to shed light on some of the mysteries on torsion. One important case is USUSY,
especially in its (2 + 1)−dimensional formulation. Indeed, such theory has been found to have
many similarities with the Dirac field theory on graphene (see [7, 8], and especially the recent
[9]). However, the exploration of the role of torsion in this setting found a geometric obstacle, just
due to the (2 + 1) dimensions: As we shall recall later, a Dirac spinor only couples to the fully
antisymmetric component of torsion, hence three dimensions are necessary. Lacking the spatial
third dimension, this seemed impossible [10]. This “no-go” result stopped research in this direction.
It was the main goal of the work [11] to suggest a way to surmount this obstacle, based on the use
of time as the necessary third dimension. Here we spot the main ideas of this paper.

As well known [4], the low energy excitations of the 𝜋 electrons of two dimensional Dirac
materials with hexagonal lattice, such as graphene, germanene, silicene, are well described by a
relativistic-like (2 + 1)-dimensional Dirac theory, governed by the action

𝑆0 [Ψ,Ψ] = 𝑖ℏ𝑣𝐹

∫
𝑑3𝑥Ψ𝛾𝑎𝜕𝑎Ψ , (1)

where 𝑣𝐹 is the Fermi velocity, the flat index 𝑎 = 0, 1, 2, we are in a reducible representation of the
Lorentz group, that is Ψ𝑇 = (𝜓+, 𝜓−) is a four-Dirac spinor, made of two irreducible two-spinors,
𝜓±, describing both Dirac points, and we used the prescription of [12] for the Dirac matrices.

The natural generalization of (1) to a (2 + 1)-dimensional spacetime, equipped with a metric
𝑔𝜇𝜈 = 𝜂𝑎𝑏𝑒

𝑎
𝜇𝑒

𝑏
𝜈 (being 𝑒𝑎𝜇 the vielbein) and a metric-compatible connection Γ𝜆

𝜇𝜈 that includes
torsion [13] 𝑇𝜆

𝜇𝜈 = Γ𝜆
𝜇𝜈 − Γ𝜆

𝜈𝜇 is 𝑆 = 𝑖ℏ𝑣𝐹
∫
𝑑3𝑥

√−𝑔Ψ𝛾𝜇𝐷𝜇Ψ, where the covariant derivative
is defined as 𝐷𝜇Ψ = 𝜕𝜇Ψ + 𝑖

2𝜔
𝑎𝑏
𝜇 J𝑎𝑏Ψ, with J𝑎𝑏 = 𝑖

4 [𝛾𝑎, 𝛾𝑏] the Lorentz generators in spinor
space. The spin-connection, 𝜔𝑎𝑏

𝜇 = 𝑒𝑎
𝜆
(𝛿𝜆𝜈𝜕𝜇 + Γ𝜆

𝜇𝜈)𝑒𝑏𝜈 , can be decomposed into torsion-free
and contorsion contributions, 𝜔𝑎𝑏

𝜇 = �̊�𝑎𝑏
𝜇 + 𝜅𝑎𝑏𝜇 , where 𝑇𝜆

𝜇𝜈 = 𝐸𝜆
𝑎𝜅𝜈

𝑎
𝑏
𝑒𝑏𝜇 − 𝐸𝜆

𝑎𝜅𝜇
𝑎
𝑏
𝑒𝑏𝜈 . Standard

manipulations of the action 𝑆, reported in detail in [11], lead to the form, apart from possible
boundary terms,

𝑆 = 𝑖ℏ𝑣𝐹

∫
𝑑3𝑥 |𝑒 | 𝜓

(
𝛾𝜇�̊�𝜇 − 𝑖

4
𝛾5 𝜖

𝜇𝜈𝜌

|𝑒 | 𝑇𝜇𝜈𝜌
)
𝜓 , (2)
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where |𝑒 | =
√︁
|𝑔 |, the covariant derivative, �̊�𝜇, is based on the torsion-free connection, �̊�𝑎𝑏

𝜇 ,
only, 𝛾5 ≡ 𝑖𝛾0𝛾1𝛾2, due to the reducibility of the representation, commutes with the other gamma
matrices, and the contribution due to the torsion is all in the last term through its totally antisymmetric
component [14]. From here, it is evident that the emergent fermions of Dirac materials Ψ can only
be coupled to

𝑇012 or𝑇102 or𝑇210 , (3)

hence, one should make sense of the it time component. In fact, the torsion tensor in crystals is
related to the Burgers vector through the formula [3]

𝑏𝑎 =

∫ ∫
Σ

𝑒𝑎𝜆𝑇
𝜆
𝜇𝜈𝑑𝑥

𝜇 ∧ 𝑑𝑥𝜈 , (4)

where Σ is a surface containing the dislocation, but otherwise arbitrary, 𝑎 = 0, 1, 2, and ∧ stands for
the exterior product operator. We clearly see that the only two possibilities that a nonzero Burgers
vector can give rise to 𝜖 𝜇𝜈𝜌𝑇𝜇𝜈𝜌 ≠ 0, necessary for the coupling in (2), are: (i) a time directed screw
dislocation, i.e. 𝑏𝑡 ∝

∫ ∫
𝑇012𝑑𝑥 ∧ 𝑑𝑦 or (ii) an edge dislocation spotted by a space-time circuit,

e.g, 𝑏𝑥 ∝
∫ ∫

𝑇102𝑑𝑡 ∧ 𝑑𝑦. Here we took 𝑒𝑎𝜇 = 𝛿𝑎𝜇, in both circumstances.
This is the above-mentioned geometric obstacle, that led earlier investigators to conclude that,

for two dimensional Dirac materials, dislocations could not be accounted for by torsion [10]. Indeed,
this is so if time is not considered. On the other hand, as we shall soon recall, in [11], by focussing
on the second scenario, it is shown that there might be a way out.

We can take the Riemann curvature to be zero, �̊�𝑎𝑏
𝜇𝜈 = 0, but with 𝜅𝑎𝑏𝜇 ≠ 0, and choose a frame

where �̊�𝑎𝑏
𝜇 = 0 [11]. These settings make possible to isolate the effects of torsion on the system,

and the corresponding action is

𝑆 = 𝑖ℏ𝑣𝐹

∫
𝑑3𝑥 |𝑒 |

(
Ψ𝛾𝜇𝜕𝜇Ψ − 𝑖

4
𝜓+𝜙𝜓+ +

𝑖

4
𝜓−𝜙𝜓−

)
, (5)

where 𝜙 ≡ 𝜖 𝜇𝜈𝜌

|𝑒 | 𝑇𝜇𝜈𝜌. As clearly shown in (5), even in the presence of torsion, the two irreducible
spinors, 𝜓+ and 𝜓−, actually decoupled. Nonetheless, they couple to 𝜙 with opposite signs.

To spot the effects of 𝜙, we propose to make use of the particle-antiparticle structure, encoded
in the action (5). Indeed, the regime of Dirac materials we describe, is the “half-filling” [4], whose
vacuum state has the vacancies of the valence band (𝐸 < 0) completely filled, and the vacancies of
the conduction band (𝐸 > 0) empty. This is the analog of the Dirac sea, and the particle-antiparticle
moving realizes a time-loop. The pictures in Fig. 1 refer to a defect-free sheet. The presence of a
dislocation, e.g., with Burgers vector ®𝑏 directed along 𝑥, would result in a failure to close the loop
proportional to ®𝑏, as depicted in Fig. 2.

2. Torsion in USUSY

In USUSY all the fields belong to a one-form connection A, in (2+1) dimensions, and the
vielbein is realized in a different way than in standard SUGRA models [2]. This model has
nontrivial dynamics, and leads to a scenario where local SUSY is absent (although there is still
diffeomorphism invariance), but rigid SUSY can survive for certain background geometries [8].
Because there is no local SUSY, there are neither SUSY pairings nor gauginos. The only propagating
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Figure 1: Idealized time-loop. At 𝑡 = 0, the hole (yellow) and the particle (black) start their journey from
𝑦 = 0, in opposite directions. Evolving forward in time, at 𝑡 = 𝑡∗ > 0, the hole reaches −𝑦∗, while the particle
reaches +𝑦∗, (blue portion of the circuit). Then they come back to the original position, 𝑦 = 0, at 𝑡 = 2𝑡∗ (red
portion of the circuit). On the far right, the equivalent time-loop, where the hole moving forward in time is
replaced by a particle moving backward in time. Figure taken from [11].

Figure 2: Dislocation-induced deformations of the idealized time-loop. Figure taken from [11].

degrees of freedom are fermionic [8], and the parameters that appear in the model are either dictated
by gauge invariance, or raise as integration constants. The rigid USUSY invariant backgrounds are
strong candidates to describe the 𝜋-electrons in graphene-like materials, see [7], and the more recent
[9]. The versatility of USUSY make it possible to include non-Abelian internal groups, like 𝑆𝑈 (2).
This way one can take into account the two Dirac points at once, allowing for describing scenarios
where, due to lattice symmetry considerations, both Dirac points are needed. This is the case of a
continuous description of grain boundaries (a region in the lattice characterized by a misorientation
angle between two sides). These appealing properties of USUSY were already reported in [12].
Furthermore, in USUSY the torsion of geometric backgrounds appears very naturally, hence its
totally antisymmetric part is coupled with the fermions. As discussed earlier, the third dimension
to have a non-zero coupling is necessary, and this makes USUSY a good arena where to see the
time-loop at work.

Taking into account the two Dirac points, the action of USUSY in (2 + 1) dimensions for fixed
background bosonic fields is obtained from the Chern-Simons three-form for A with an 𝑆𝑈 (2)

4
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internal gauge group [7]

𝑆𝑈𝑆𝑈𝑆𝑌 = 𝜅

∫
𝜓
𝑖
(
𝛾𝜇�̊�𝜇 − 𝑖

8
𝜖 𝑏𝑐
𝑎 𝑇𝑎

𝑏𝑐

)
𝜓𝑖 |𝑒 |𝑑3𝑥 , (6)

where lower case Latin letters, 𝑎, 𝑏, . . ., represent tangent space Lorentz indices, and 𝑇𝑎
𝑏𝑐

=

𝑇𝑎
𝜇𝜈 𝐸

𝜇

𝑏
𝐸𝜈
𝑐 . We are not taking into account possible boundary terms. Apart from a global factor

𝜅 that can be adjusted to be 𝑖ℏ𝑣𝐹 , there are two main differences of 𝑆𝑈𝑆𝑈𝑆𝑌 with respect to (2).
The first one is the coefficient in front of the torsion term, which appears in the system as an
integration constant [2]. This difference is due to the coefficient associated to SUSY generators in
A are composite fields (vielbein + spin-1/2 fermion). The second difference is the index 𝑖 (here
taken as a colour internal index, considering both Dirac points in the model), which is allowed by
using another representation for 𝜓 and the Dirac matrices (see details in Appendix B of [12]).

Finally, another attractive feature of USUSY is that it permits the description of a BTZ black
hole [15], in a pure bosonic vacuum state (𝜓 = 0) [2]. This follows from the fact that the BTZ
black hole can be obtained from a Lorentz-flat connection [16], provided the spacetime has torsion,
in order that the contribution to Lorentz curvature coming from the contortion term cancels out
the Riemann curvature contribution. The spectrum of BTZ black holes (as locally anti-de Sitter
spaces, with negative cosmological constant Λ = −1/ℓ2), is given in terms of their mass, 𝑀 , and
angular momentum, 𝐽. This includes the extremal cases, 𝑀ℓ = |𝐽 | and 𝑀 = 0 (the 𝑀 = −1 case is
the globally anti-De Sitter space, while the other cases are conical singularities [17]). In particular,
the 𝑀 = 0 case could play a very important role in the gravity induced Generalized Uncertainty
Principle [18], and in the related Hawking-Unruh phenomenon on graphene [6].

3. Conclusions

When time is duly included in the emergent relativistic-like picture of Dirac materials, the
geometric obstruction to describe the effects of dislocations in terms of a suitable coupling with
torsion, within the (2 + 1)−dimensional field theoretical description of the 𝜋-electrons dynamics,
in principle could be overcome. Provided dislocations can be meaningfully described by a suitable
torsion tensor, the low energy Dirac field theory emerging here can include a nonzero coupling with
torsion, accounting for a field theory description of the effects of dislocations, only when the third
dimension is taken to be time. This also paves the road to the exploration of USUSY as a top-down
description of the 𝜋 electrons of Dirac materials, where torsion appears in a very natural way.
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