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Individual events at high-energy colliders like the LHC can be represented by a sequence of
measurements, or ‘point patterns’. Starting from this generic data representation, we build a simple
Bayesian probabilistic model for event measurements useful for unsupervised event classification
in beyond the standard model (BSM) studies. In order to arrive to this model we assume that the
event measurements are exchangeable (and apply De Finetti’s representation theorem), the data is
discrete, and measurements are generated frommultiple ‘latent’ distributions (called themes). The
resulting probabilistic model for collider events is a mixed-membership model known as Latent
Dirichlet Allocation (LDA), a model extensively used in natural language processing applications.
By training on mixed dijet samples of QCD and BSM, we demonstrate that a two-theme LDA
model can learn to distinguish in (unlabelled) jet substructure data the hidden new physics patterns
produced by a non-trivial BSM signature from a much larger QCD background.
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Uncovering hidden new physics patterns in collider events

1. A simple probabilistic model for collider events

A collider event e can be represented by a sequence (o1,o2, . . . ,oN ) of measurements, or
observations oi, taking values in some space O spanned by a set of observables O1, . . . ,Ok , like e.g.
the (pT , η, φ) particle coordinates in a hadron collider. Collider events can be thought as individual
realizations of a stochastic point process in O, represented by an unordered distribution of points

e (o) =
N∑
i=1

δ(k)(o − oi) , (1)

where the number of measurements N , as well as their positions in O are random variable changing
from event to event. For the interesting events, the corresponding point patterns will not be
uniformly distributed in O. For instance, at hadron colliders a substantial amount of the energy
from the high-energy pp-collision is emitted in the form of collimated sprays of hadrons. These
hadronic sprays, known as jets, lead to clustered point patterns in the space O = (η, φ). For a
generic O, the resulting point patterns for individual events can be very sparse, or give rise to
irregularly shaped patterns when averaging over many events. A complete probabilistic model
for these sequence of event measurements P(e) = P(o1,o2, . . . ,oN ) is very challenging, if not
impossible. Our goal in this note is to show that it is possible to write a simple generative model
for P(e) that is capable of (approximately) capturing hidden features in events and that it can be
used successfully for unsupervised event classification [1, 2]. In the following we build a generative
model based on three (probabilistic) model-building assumptions: (i) Measurements in an event are
exchangeable, (ii) the observable space O is discretized, and (iii) event measurements are generated
from multiple (latent) probability distributions over O.

Exchangeability. Our first model-building assumption is that event measurements are exchange-
able, i.e. the order inwhich themeasurements oi are extracted is irrelevant. This implies permutation
invariance: P(o1, . . . ,oN )=P(oπ(1), . . . ,oπ(N ))where π is any element of the permutation group of
N indices. Exchangeability must not be confused with independent and identically distributed (iid).
For iid measurements, the probability distribution would be completely factorizable and indeed
exchangeable, but the converse wouldn’t necessarily be true. Exchangeability actually implies a
weaker notion of statistical independence called ‘conditional independence’. Both concepts are
related through De Finetti’s representation theorem:

(De Finetti’s theorem) A sequence of event measurements is exchangeable iff there exists
a latent variable ω over some latent space Ω, and a distribution P(ω), such that

P(o1, . . . ,oN ) =

∫
Ω

dωP(ω)
N∏
i=1
P(oi |ω) . (2)

This result implies that if event measurements in O are exchangeable, then these can be thought as
being conditionally independent with respect to some marginalized hidden variable ω. An event is
generated by first sampling some random element ω from a latent space Ω, then each measurment
in the event is drawn from a distribution over O conditioned on the drawn ω. Looking closely at
the integral representation in (2) one recognizes P(ω) as a prior and P(o|ω) as a likelihood, and
thus justifying the use of Bayesian probabilistic modelling.
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Uncovering hidden new physics patterns in collider events

MeasurementDiscretization. Permutation invariance leads to a very simple conditional structure
forP(o1, . . . ,oN ), but De Finetti’s theorem does not specify how to select the latent spaceΩ, nor how
to model the prior P(ω) or the conditional distribution P(o|ω) in (2). For this, we need additional
assumptions. One possibility, which makes parameter inference much simpler, is to choose the
prior and likelihood to be conjugate distributions, for instance, these can belong to the exponential
family. Our second model-building assumption in what follows will be that the distribution P(o|ω)
over O is discrete. For this to make sense, we first discretize the continuous observables spanning
O by binning this space so that the outcome of any event measurement is now a discrete unit, or
token, represented by the bin it populates. Notice, that this ‘tokenization’ of event measurements,
reduces the problem of finding a continuous distribution P(o|ω) over a multidimensional space
O, to finding a discrete distribution over the finite set of non-negative integers labelling the bins
in O. From all the discrete distributions in the exponential family, the most natural choice for
P(o|ω) is the multinomial distribution (a multivariate generalization of the binomial distribution).
This distribution is parametrized by a normalized M-dimensional vector β = (β1, · · · , βM ), with∑M

m βm = 1 and 0 ≤ βm ≤ 1, where M is the total number of bins that partition O and the number
βm represents the probability that a measurement oi populates the mth bin. In order to generate an
individual (tokenized) event measurement oi, we first randomly sample an ω from the prior, then,
we randomly draw an index m ∈ {1, . . . ,M} from the multinomial P(o|ω, β) conditioned onω. The
resulting index points toward the bin where this measurement belongs to. The sampling of an event
measurement from the multinomial can be pictured as rolling a dice with M sides and bias β, which
at this level is a free parameter of our probabilistic model. In order to ‘smooth’ the multinomial
parameter, we introduce a prior for β. The most natural prior is theDirichlet distribution, a member
of the exponential family that is conjugate to the multinomial distribution, defined as

D(β |η) =
Γ(η1 + · · · + ηM )

Γ(η1) · · · Γ(ηM )

M∏
m=1
(βm)

ηm−1 . (3)

The Dirichlet D(·|η) is a family of distributions with concentration parameter η = (η1, . . . , ηM ),
ηm > 0 and Γ(x) denotes the Gamma function. The concentration parameter governs the possible
shapes of the Dirichlet over β space, i.e. over the (M − 1)-dimensional simplex. Notice that
introducing this prior makes our model fully Bayesian, since we have replaced the task of fixing a
large set of parameters (the probabilities β) of the multinomial with choosing a suitable Dirichlet
distribution from which these parameters are sampled from.

Latent Dirichlet Allocation. We now need to specify the nature of the latent variable ω and
the conditional dependence of the multinomial P(o|ω, β) with ω. This brings us to our third
model-building assumption which is that the measurements oi in an event are assumed to arise
from multiple multinomial distributions P(o|t, βt ), labeled by a finite index t ∈ {1, . . . ,T} and
parametrized by βt = (βt1, · · · , βtM ). Each multinomial distribution represents an underlying event
category, or theme, potentially describing features from multiple underlying physical processes
or phenomena. “Themes" is a terminology borrowed from the machine learning community,
specifically from unsupervised text classification and natural language processing. The latent
variable is a T-dimensional vector ω = (ω1, . . . ,ωT ) describing the mixing proportions for every
theme. The likelihood in De Finetti’s representation takes the form of a multinomial mixture
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model, P(o|ω) =
∑T

t=1 P(t |ω)P(o|t, βt ), with a fixed number (T) of multinomials P(o|t, βt ). The
discrete distributions P(t |ω) are also multinomial distributions that are parametrized by the latent
variable ω. These represent the probability of selecting a particular theme P(o|t, βt ) from which
event measurements are extracted. Therefore, the latent space Ω is a (T − 1)-dimensional simplex,
denoted by ΩT , spanned by the latent mixtures ω which now satisfy the convexity constraints∑T

t=1 ωt = 1, 0 ≤ ωt ≤ 1. This implies that the most natural choice for the prior P(ω) in (2) is the
Dirichlet distribution over such simplex. With these model-building assumptions, we finally arrive
to a fairly simple generative model for collider events over O:

P(o1, . . . ,oN |α,η) =

(
T∏
t=1
D(βt |ηt )

) ∫
ΩT

dωD(ω |α)
N∏
i=1

[
T∑
t=1
P(t |ω) P(oi |t, βt )

]
(4)

This model is known as Latent Dirichlet Allocation (LDA), and was first proposed as a topic model
for texts1 [4]. The model has two (multidimensional) model-building parameters governing the
shapes of the Dirichlet distributions: the T-dimensional vector α = (α1, . . . , αT ) for the theme
mixing proportions and a T × M matrix η where the M-dimensional row ηt controls the shape of
the Dirichlet for the theme multinomials over O. The number of themes T is also a model building
parameter to be fixed before training these models with data. The simplest possible model is the
two-theme LDA model. When T = 2, the Dirichlet prior D(ω |α1, α2) becomes a beta distribution
over the unit interval, and P(t |ω) is a binomial distribution over t ∈ {1,2}. After fixing the priors,
the generative process for a single collider event goes as follows: (i) draw a random mixing ω
between zero and one from the beta prior, (ii) flip a coin with biasω, (iii) if the coin lands on ‘heads’
select the first theme, otherwise select the second theme, (iv) from the selected theme randomly
sample one measurement o ∈ O. Repeat steps (ii-iv) until all measurements o1, . . . ,oN in the event
have been generated. LDA is a mixed membership model because each measurements oi within an
event can arise from multiple themes (e.g. a ‘head’ or a ‘tail’ theme when T = 2), and each event
within a sample exhibits these themes with different proportions. Mixed membership models are
not to be confused with mixture models. In the later, all measurements within an event are limited
to come from a single theme (the mixture of theme is manifest at the event sample level, and not at
the event level), while the former are more flexible probabilistic model that are capable of capturing
common features in different physical processes.

Event classification with LDA. After fixing the Dirichlet parameters α, η and the number of
themes T = 2, we can use LDA for unsupervised event classification. The posterior distribution
P(ω, t, β|oi, α, η) is calculated using Bayes theorem. The idea is to learn from unlabelled collider
data the theme multinomial parameters βtm and use them to cluster events into two categories.
We use variational inference (VI) [4] for the learning algorithm. During training, the algorithm
learns the themes by identifying recurring measurement patterns, in particular, it identifies co-
ocurrences between measurement bins throughout the event sample. Once the learning converges
and the themes have been extracted, we build a likelihood-ratio defined by L(o1, . . . ,oN |α) =∏N

i=1
P(oi |β̂1(α))

P(oi |β̂2(α))
. The β̂t are statistical estimators for the βt ’s extracted from VI. The classifier is

obtained by thresholding: for some suitable c ∈ R, if L(o1, . . . ,oN |α) > c then the event belongs to

1Topic modelling was first used in collider studies in [3] for quark/gluon jet discrimination.
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theme t = 1, else it belongs to theme t = 2. This classifier is a function of the Dirichlet parameter
α, and is better thought as a continuous ‘landscape’ of LDA classifiers. In principle there is no
robust criteria for choosing one specific set of α’s over another. Preliminary results given in ref. [2]
suggest that a quantity known as perplexity can be used to precisely select the best α.

2. Latent Dirichlet allocation for new physics in jet substructure

We now demonstrate how a two-theme LDA model can be used to uncover Beyond the SM
(BSM) physics hiding inmulti-jet events. First, we choose a set of jet observables forO. Observables
that associate only onemeasurement to each event are not suitable for ourmethod because this would
produce for each event a single measurement2 in O. In order for LDA to learn from measurement
co-ocurrence, we need observables that produce for every event a pattern of points in O. One
possibility is to use observables extracted from the de-clustering history of jets. The jet de-
clustering procedure generates a binary tree where each node corresponds to a splitting of a mother
subjet into two subsequent daughter subjets j0 → j1 j2. During each splitting, a set of measurements
o is registered, generating a sequence of points in O for the whole de-clustering tree. Assuming
the de-clustering history to be exchangeable (i.e. ignoring the conditional dependence between
measurements) is a good enough approximation for event classification purposes. For the splitting
observables we choose quantities that are sensitive to generic decay configurations of massive
resonances, like the subjets invariant mass m0, mass drop m1/m0, and Lund plane observables, kT
and ∆, defined in [6]. We then build a multi-dimensional space O spanned by different combination
of these observables. Moreover, we also include a ‘jet label’ indicating to which jet in the event the
measurement belongs to. In our experiments, we used for the hidden BSMbenchmark aW ′−φmodel
[1, 2] with a boson mass MW ′ = 3 TeV and scalar mass Mφ = 0.4 TeV. For the signal process we
considered pp→ W ′ production followed by the decay chain W ′→ Wφ→ WWW , with W bosons
decaying hadronically. For the background we considered QCD dijet production. We generated
100k background and signal events and performed jet clustering using the C/A algorithm with
R = 1. For the splitting observables we used the primary Lund plane O = { j, log kT , log(1/∆)},
where the integer j = 1,2, ... labels the leading jet, subleading jet, etc, ordered by invariant
mass. The truth-level distributions for the primary Lund plane are given in figure 1, for the QCD
background (first column) and signal (second column), for the leading jet (top row) and subleading
jet (bottom row). The region near the hypothenuse of the Lund triangles describe the hard and
collinear splittings. This region exhibits discriminating features between signal and background:
for the signal we find two (one) dark clusters for the leading (subleading) jet, corresponding to the
massive decay φ→WW→ j j j j (W → j j), while for the QCD background we expect a uniform
pattern along the hypothenuse. We also can see non-perturbative features discriminating between
background and signal along the log kT ∼ 0 axis. We produced an unlabelled mixed sample of
100k events with s/b = 5% and used it to train a two-theme LDA on the primary Lund plane
with the Gensim python package. For the Dirichlet prior D(ω |α) controlling the theme mixings
we fixed it to a very asymmetric shape α0 = and α2 =. During training, this choice forces one
multinomial theme (t = 1) to approximate the mixed data distribution which we know (a priori)

2Jet substructure observables that marginalize over all particles in the event, like e.g. N-subjettiness [5], fall into this
category and are therefore not useful for LDA.
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Figure 1: Truth-level primary Lund planes for QCD background (1st col.) and BSM signal (2nd col.).
Results for the first theme (3rd col.) and second theme (4th col.), learned from a two-theme LDA model
trained with100k events composed of an unlabelled mixture of QCD and BSM at s/b = 5%.

to be QCD-dominated because s � b. On the other hand, the other theme (t = 2) is expected
to learn non-QCD patterns in the Lund plane, with the hope that it picks up signal features. The
outcome of the learned themes are shown in figure 1: the first theme (third column) matches very
well with the QCD truth level distribution (first column), while the second theme (fourth column)
contains the new physics signal features present in the truth level signal (second column). This
result demonstrates that the two-theme LDA model can extract small BSM signals from a large
background in a completely unsupervised manner. For more details see ref. [2].

3. Conclusions

In conclusion, we have demonstrated that it is possible to build a simple probabilistic model
for collider events. This model can be used for unsupervised event classification, e.g. for extracting
BSM physics from jet substructure. The method presented here is based on a Bayesian probabilistic
model called Latent Dirichlet Allocation. We arrived to this model starting from three main
assumptions: (i) collider event measurements are to a good approximation ‘exchangeable’, leading
toDe Finetti’s integral representation forP(o1,o2, . . .), (ii) individualmeasurements are discrete (i.e.
tokenized), and (iii) measurements arise from a multiplicity of latent (multinomial) distributions
over O, called ‘themes’. We trained a two-theme LDA model on the primary Lund plane from
(unlabelled) a mixed dijet event sample with QCD background and BSM signal (from a W ′ − φ
model) at s/b = 5%. Our results indicate that LDA can successfully discover small BSM signals
from unlabelled data.
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