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GPUs represent one of the most sophisticated and versatile parallel computing architectures that
have recently been introduced in the High Energy Physics (HEP) field. GooFit is an open source
tool interfacing ROOT/RooFit to the CUDA platform that allows to manipulate probability density
functions and perform fitting tasks. The striking performances and computing capabilities of
GPUs, in comparison to traditional CPU cores, have been exploited in the application of a high-
statistics pseudo-experiment method implemented in GooFit, with the purpose of estimating the
local or global statistical significance of a physics signal, already known or new respectively.
When dealing with an unexpected new signal, a global significance must be estimated to take into
account the Look-Elsewhere-Effect and this is accomplished coupling a clustering-based scanning
technique to the pseudo-experiments method, also without introducing any relevant systematic
uncertainty.
By means of these tools it has been possible to investigate the approximation characterizing
modern, and currently widely used, statistical methods. In particular two studies have been
carried out: 1) the asymptotic behaviour of a likelihood ratio test statistics (Cowan-Cranmer-
Gross-Vitells) has been investigated while estimating the local statistical significance of a known
signal, 2) the approximation of the Gross-Vitells method (trial factors) has been explored while
estimating the global statistical significance of a new signal.
These studies have been collected and presented here coherently with a didactic approach. Indeed
this work is currently used in lectures about Statistics for Data Analysis. However the presented
results can be a useful reference for the confirmation - by means of GPUs - of the validity of few
asymptotic formulas/methods now commonly used in HEP.
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1. Introduction

The HEP researchers often have to deal with "signals" that highlight a discrepancy with the
current theoretical models predictions. These signals can be either already known or completely
new. To claim their confirmation or first observation respectively, their statistical significance,
correspondingly local or global, must be assessed. Modern statistical methods commonly used
to estimate statistical significances have been introduced at the beginning of the LHC era, when
scientific computing with GPUs was only starting to be explored and not yet introduced in HEP as
a resource. Nowadays the capabilities of GPU acceleration are being enough commonly used in
HEP (in data analyses as well as in algorithms for event reconstruction and particle identification).

The word GPU-accelerated computing refers to an enhancement of application performances
that can be obtained by offloading compute-intensive portions of the code to the GPU, while the
remaining parts still runs on the CPUs. The computing capabilities are enhanced once a sequence
of elementary arithmetic operations are performed in parallel on a huge amount of data. In the HEP
context GooFit [1] is an under development open source data analysis tool, used in applications for
parameter estimation, that interfaces the commonly used ROOT/RooFit to the CUDA [2] parallel
computing platform on nVidia’s GPUs (it also supports OpenMP). The Probability Density Function
(PDF) evaluation on large datasets is typically the bottleneck in the MINUIT algorithm. GooFit
acts as an interface between the MINUIT minimization algorithm and a parallel processor which
allows a PDF to be evaluated in parallel. Fit parameters are estimated at each negative-log-likelihood
(NLL) minimization step on the host side (CPU) while the PDF/NLL is evaluated on the device
side (GPU). Applications using, even recursively, a series of several fits with complicated PDFs,
can evidently take advantage of the GPU acceleration by using GooFit. Once implemented within
GooFit, Monte Carlo pseudo-experiments represent a very good example of an application with
these characteristics, as discussed in the next sections. Description and details about GooFit can
be found elsewhere and especially in Refs. [1].

The studies, that have been here collected and coherently discussed, were carried out along the
period 2015-2018 and already presented in a few conferences [3] but in a disaggregated way.

2. Pseudo-experiments method for local statistical significance estimation

Many searches for new physical phenomena look for a peak in a distribution that typically is
a reconstructed invariant mass and the peaking structure may represent a resonance/particle. The
location (mass) of a peak (particle) is known in some cases such as 1) in searches for rare decays
of a known particle, or 2) when an experiment is looking to confirm a new particle/claimed by
another experiment, and/or 3) when one or more theoretical models predicts it. The local statistical
significance associated to a peak (at 𝑚0) can be estimated in terms of a local p-value, expressed as

𝑝(𝑚0) =
∫ ∞

𝑞𝑜𝑏𝑠 (𝑚0)
𝑓 (𝑞 |𝑚0, 𝜇 = 0)𝑑𝑞 (1)

Monte Carlo pseudo-experiments (MC toys) are used to estimate the probability (p-value) that
background fluctuations would - alone - give rise to a signal as much significant as that seen in the
data. To test the computing capabilities of GPUs with respect to CPU cores, a high-statistics MC

2



P
o
S
(
C
H
A
R
M
2
0
2
0
)
0
0
2

Reliably estimating the statistical significance of a new physics signal by exploiting GPUs Alexis Pompili

Figure 1: Fits to the background-subtracted 𝐽/𝜓𝜙 invariant mass in the 𝐵+ → 𝐽/𝜓𝜙𝐾+ decay, as presented
in Ref.[4]. The left peaking structure, close to the kinematic threshold and laying on a residual phase-space
background, was already observed by the CDF experiment. Its significance has been re-estimated - in this
study - with a MC toys technique implemented in the GooFit framework.

toys technique has been implemented both in ROOT/RooFit and GooFit frameworks [3] with
the aim to estimate a p-value and specifically the local statistical significance of the structure
observed by the CMS experiment close to the kinematic threshold of the 𝐽/𝜓𝜙 invariant mass in
the 𝐵+→ 𝐽/𝜓𝜙𝐾+ decay, presented in Ref. [4] and reported in Fig.1 as well.

A single toy fit cycle consists in the following sequence of steps:

1) generation of fluctuated background binned distribution according to the 3-body phase-space
model (the number of entries are fixed to that in the data thus ignoring Poisson fluctuations);

2) a Binned Maximum Likelihood (BML) fit is performed with the phase-space model (null
hypothesis 𝐻0); the number of entries are fixed to that in the data thus ignoring Poisson fluctuations;

3) 8 BML fits are performed by adding to the phase-space a Voigtian model truncated to
account for the kinematic threshold (alternative hypothesis 𝐻1); the Gaussian resolution function
has fixed width (2𝑀𝑒𝑉) and the signal yield is constrained to be positive. For each bin the PDF
value is estimated by integration over the bin since the signal is steep with respect to the bin size.
The 8 𝐻1 fits differ by the starting values (2 masses and 4 widths) within the region of interest
defined from the available values from the CDF experiment.

4) For each fit a Δ𝜒2 value is calculated with respect to the 𝐻0 fit and the best (higher) value is
chosen among the 8 𝐻1 fits. The final Δ𝜒2 (the test statistic) distribution, 𝑓 (Δ𝜒2), is obtained over
the whole sample of MC toys and is shown in Fig. 2.

The MC toys production was stopped after 57.7M toys, once a fluctuation with Δ𝜒2 >Δ𝜒2
𝑜𝑏𝑠

was found (Fig.3). The p-value is estimated to be:

𝑝 =

∫ ∞

Δ𝜒2
𝑜𝑏𝑠

𝑓 (Δ𝜒2)𝑑 (Δ𝜒2) ≃ (57.7 · 106)−1 ≃ 1.73 · 10−8

By the inverse function of the cumulative distribution of the standard Gaussian, this p-value
corresponds to the statistical significance 𝑍𝜎 = Φ−1(1 − 𝑝)𝜎 ≃ 5.52𝜎, which is compatible with
the lower limit of 5𝜎 quoted in Ref. [4], on the basis of 50.5𝑀 toys obtained by means of RooFit.
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Figure 2: Final Δ𝜒2 distribution with one toy
(shown in Fig. 3) exceeding the value observed in
the data (≃ 53.0) marked by a red tick.

Figure 3: Bkg-only and bkg+signal fits to the MC
toy characterized by a Δ𝜒2 ≃ 56.9.

2.1 GooFit performances in the execution of the pseudo-experiments task

The used hardware setup consists in two servers, one equipped with two nVidia TeslaK20 and
32 cores (16 + 16 by Hyper-Threading) and the other with one nVidia TeslaK40 and 40 (20 + 20)
cores. To efficiently run RooFit MC toys on the 72 CPUs available on the two servers hosting the
GPUs, the ROOT/PROOF-Lite tool has been used. On the other hand the nVidia Multi Process
Service tool allows the execution of - up to 16 - simultaneous processes on the same GPU acting
as a scheduler and allowing a balanced full usage of the GPU. The optimized GooFit application
running on GPUs has provided (see details in Refs. [3]) striking speed-up performances with respect
to the RooFit application parallelized on multiple CPUs by means of PROOF-Lite. In particular,
from the point of view of the end-user analyst, having at its own disposal all the 72 CPU cores
and the three GPUs, it has been measured that 1M of toys can be produced in about 11days with
RooFit/PROOF-Lite and in about 6 hours only with GooFit/MPS, as shown in Fig.4. For a refe-
rence significance ≥ 5𝜎 a p-value ≤ 2.87 · 10−7 is needed, namely at least 3.48𝑀 toys are needed.
However, as in the case under study, the significance estimation may require many MC toys more.

Figure 4: Comparison for the elapsed
time employed with two TeslaK20 and
one TeslaK40 together as a function of
the number of MC toys; GooFit/MPS
runs 48 concurrent processes while
RooFit/PROOF-Lite runs on 72 CPUs.
For 1M toys the red diamond point
shows the extrapolated time (about
11days) for the RooFit application (red
curve). The green curve represents the
GooFit time.
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3. Exploring the applicability of Wilks’ theorem and Cowan’s asymptotic formula

The Wilks theorem [5] is often used to estimate the p-value associated to a physical signal.
Given two hypothesis, the null one, 𝐻0, with 𝜈0 degrees of freedom (dof) and an alternative one, 𝐻1,
with 𝜈1 dof, any test statistic 𝑡, defined as a likelihood ratio −2𝑙𝑛𝜆 =−2𝑙𝑛(𝐿𝐻0/𝐿𝐻1), or similarly
(in the asymptotic limit) as a Δ𝜒2 = 𝜒2

𝐻0
−𝜒2

𝐻1
, approaches a 𝜒2 distribution with 𝜈 = 𝜈1 − 𝜈0 dof,

provided that the following regularity conditions hold:

1. 𝐻0 and 𝐻1 are nested (𝐻1 includes 𝐻0);

2. while 𝐻1 → 𝐻0, the 𝐻1 parameters are well behaving, namely well defined and not approach-
ing some limit;

3. asymptotic limit, namely in the enough large data sample regime.

Once this theorem holds, the p-value associated to the signal is

𝑝 =

∫ ∞

𝑡𝑜𝑏𝑠

𝜒2
𝜈1−𝜈0 (𝑡)𝑑𝑡

and the use of pseudo-experiments to estimate the p-value is not needed in principle, even if still
suggested. When null hypothesis is background-only and the alternative one is background plus
signal, often the above conditions are not all satisfied, and the MC toys are mandatory.

By means of GooFit, which massively allows fits over millions of MC toys, it has been
enough effortless to explore the (asymptotic) behaviour of a likelihood ratio test statistic in different
situations in which the Wilks’ theorem may apply or may not apply because its regularity conditions
are not satisfied.

As in the previous with the signal parameters in the model of 𝐻1 hypothesis being the mass
(𝑚), the width (Γ) and the yield (𝜇 ≥ 0), when considering 𝐻1 → 𝐻0 not only 𝑚 and Γ are not well
defined but also 𝜇 tends to the null limit.

In general the distributions of a test statistic are not predictable and thus need to be extracted
from pseudo-experiments. MC toys according to the previously discussed procedure and physics
case have been generated for each of the following four cases:

• case (1): 𝑚 and Γ fixed, 𝜇 free;

• case (2): 𝑚 and Γ fixed, 𝜇 free but constrained to be positive;

• case (3): 𝑚 and Γ free, 𝜇 free;

• case (4): 𝑚 and Γ free, 𝜇 free but constrained to be positive.

The Δ𝜒2 distributions for the four cases are reported and superimposed in Fig. 5. Case (4) was the
one studied in Section 2 (with much higher statistics). Let us focus on the first two special cases:
in case (1) Wilks’ theorem must hold whereas in (2) a Cowan’s asymptotic formula should apply.
Both circumstances have been verified by means of the pseudo-experiments handled with GooFit.
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Figure 5: Different test statistic (Δ𝜒2) distributions for the 4 cases discussed in the text, with the same
number (2𝑀) of MC toys. Case (1) is in fuchsia, case (2) in blue whereas case (4) in red.

3.1 Special case (1) and Wilks’ theorem: 𝑚 and Γ fixed, 𝜇 free

Let us consider a likelihood ratio test statistic 𝑡𝜇 = −2𝑙𝑛𝜆(𝜇), where 𝜇 is the strength
parameter, as the basis of the statistical test. This can be a test of 𝜇 = 0 with the purpose of
establishing the existence of a signal process, thus 𝜇 is free to be either positive or negative (and it
does not properly represent a signal yield). Following [6], the PDF of the test statistic

𝑓 (𝑡𝜇 |𝜇) =
1

√
2𝜋

1
√
𝑡𝜇
𝑒−𝑡𝜇/2

asymptotically approaches a 𝜒2
𝜈=1 distribution, in agreement with the Wilks’ theorem and with the

difference of degrees of freedom being one.
A fit to the test statistic distribution with a 𝜒2

𝜈 model has been performed, where the likelihood
ratio distribution has been obtained by the fit procedure already discussed in Section 2, provided
that the values of mass and width parameters have been set to the CMS (or CDF), while leaving 𝜇
free. The best estimate obtained for the number of dof is 𝜈̂ ≃ 1.014 ± 0.001, thus enough close to
the theoretical prediction; the goodness of fit is checked using a chi-square test that returns a 11.8%
probability [3].
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3.2 Special case (2) and Cowan’s asymptotic formula: 𝑚 and Γ fixed, 𝜇 free but ≥ 0

Let us now consider the special case of the test statistic 𝑡𝜇 with the purpose to test 𝜇 = 0 in a
class of models where 𝜇 ≥ 0 is assumed; rejecting the null hypothesis (𝜇 = 0) leads to the discovery
of a signal. In this case, following Ref. [6], the test statistic is 𝑞0 = −2𝑙𝑛𝜆(0) if the estimated
signal strength 𝜇̂ ≥ 0 while is null otherwise, with 𝜆(0) being the profile likelihood ratio for 𝜇 = 0.
Cowan, Cranmer, Gross and Vitells [6] derive analytically that an asymptotic approximation for the
PDF of the statistic 𝑞0 under assumption of the background-only (𝜇 = 0) hypothesis is an equal
mixture of a delta function at zero and a chi-square distribution for one dof:

𝑓 (𝑞0 |0) =
1
2
𝛿(𝑞0) +

1
2

1√︁
2𝜋𝑞0

𝑒−𝑞0/2.

A fit to the test statistic distribution with a model consisting in a linear combination of a 𝜒2
𝜈

function and a narrow step function at zero has been performed (Fig. 6), where the likelihood ratio
distribution has been obtained by the fit procedure already discussed in Section 2 in the case of
the values of mass and width parameters are set to the CMS estimates previously obtained, while
leaving 𝜇 free. The best estimates obtained for the number of dof and the coefficient/weight in front
of the step function are 𝜈̂ ≃ 0.992 ± 0.001 and 𝑐 ≃ 0.507 ± 0.001 respectively, namely close to the
approximate theoretical prediction. A chi-square test returns a 3.5% probability for this fit [3].

Figure 6: Fit to the Δ𝑁𝐿𝐿 distribution for case (2). The fit model has a linear combination of two
components: a very narrow step function at zero and a 𝜒2

𝜈 .
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4. Global statistical significance and the Look-Elsewhere-Effect

Unlike Sections 2 and 3, let us now consider the case of searches of new particles whose mass
is not predicted by the theory or are not expected at all. If an excess in the data, compared with
the background(s) expectation(s), is found at any mass value - in principle produced either by the
presence of a real signal or by a background fluctuation - it could be interpreted as a possible signal
of a new resonance (in any position of the investigated window of a mass spectrum). In this case
the mass is not fixed but estimated from data and the local significance, given by Eq. 1, must be
replaced by a global significance of the associated peak. The corresponding global p-value is

𝑝(𝑚) =
∫ ∞

𝑞𝑜𝑏𝑠 (𝑚)
𝑓 (𝑞 |𝑚, 𝜇 = 0)𝑑𝑞 (2)

where the function 𝑓 (𝑞 |𝑚, 𝜇 = 0) is the PDF of the adopted test statistic 𝑞. This p-value gives the
probability that a background fluctuation at any mass value, in the mass range of interest, results in
a value of 𝑞 greater or equal the observed value 𝑞𝑜𝑏𝑠 (𝑚). The global p-value is greater than the
local one and thus the global significance is lower than the local one. This effect of reduction of
significance is called Look Elsewhere Effect (LEE) [7][8].

In general, when an experiment is searching for a new signal where one or more parameters of
interest ( ®𝜃) are unknown (i.e. both mass and width or other properties of the new state), the global
p-value can be determined from the distribution of the test statistic 𝑞𝑔𝑙𝑜𝑏 assuming background only
hypothesis, given the observed value 𝑞𝑔𝑙𝑜𝑏

𝑜𝑏𝑠
, according to the expression (a generalization of Eq. 2)

𝑝𝑔𝑙𝑜𝑏 =

∫ ∞

𝑞
𝑔𝑙𝑜𝑏

𝑜𝑏𝑠

𝑓 (𝑞𝑔𝑙𝑜𝑏 |𝜇 = 0)𝑑𝑞𝑔𝑙𝑜𝑏 (3)

where the test statistic 𝑞𝑔𝑙𝑜𝑏 = 𝑞( ®̂𝜃, 𝜇 = 0) is the one corresponding to the the largest values
obtainable for the parameters’ estimators over the entire parameter range, having denoted with ®̂𝜃
the set of parameters of interest that maximizes 𝑞( ®𝜃, 𝜇 = 0) [8]. For the purpose of simplification
of the notation let us remain in the simplest one-dimensional case of a resonance search (®𝜃 = 𝑚, Γ)
where the peak width is dominated by the experimental resolution if the intrinsic width is relatively
small (Γ ≪ Γ

𝑒𝑥𝑝
𝑟𝑒𝑠 ≡ Γ0): 𝜃 = 𝑚 and Γ0 is settled (taken from simulation).

Even in this 1D case (only mass as free parameter) and even if the test statistics 𝑞 is derived
by a likelihood ratio, Wilks’ theorem cannot be applied because the value of the mass is undefined
for 𝜇 = 0: in case of background only, 𝑞 would no longer depend on 𝑚 and the two hypotheses
entering the numerator and denominator of the likelihood ratio would not be nested [8]. However
how can 𝑞𝑔𝑙𝑜𝑏 be evaluated? There are two viable approaches: 1) compute it by means of the
method of pseudo-experiments, thus requiring a large amount of MC toys and a huge demand of
CPU time and the aid from GPUs is crucial, or 2) estimate it in an approximate way (still taking into
account the LEE) by the method of Trial Factors [7], namely relaying on the asymptotic behaviour
of likelihood-ratio estimators. In the next two sections the two methods will be addressed separately
and eventually the full compatibility between them will be discussed in Section 7.
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5. Pseudo-experiments with a clustering-based scanning approach to address LEE

Taking the LEE into account implies to consider, within the same background-only fluctuation
and everywhere in the relevant mass spectrum, any random peaking behaviour with respect to the
expected shape associated to the background model. For this purpose a scanning technique based
on a clustering approach has been developed, as described below.

Beforehand a pseudo-data invariant mass distribution of 15K candidates in a generic region
of interest, namely [1, 18]GeV, has been generated according to a fictitious 7𝑡ℎ order Polynomial
background model on the top of which any desired amount of a significant signal, mimicked by a
Voigtian model, was artificially added close to 8GeV (as in Fig.7). At this mass value a 60MeV
mass resolution is considered.

The fits to the pseudo-data distribution of Fig.7 are performed accordingly: the background-
only model (the Null Hypothesis 𝐻0) is a 7𝑡ℎ order Polynomial function whereas the back-
ground+signal model (the Alternative Hypothesis 𝐻1) is obtained by adding a Voigtian function.
The resolution values in the latter are reasonably increased as a function of the increasing invariant
mass while satisfying the 60MeV constraint at 8GeV [3]. By performing the 𝐻0 and 𝐻1 fits, the
local statistical significance of this peaking structure is 𝑍𝜎 = 5.5𝜎 with 𝑍 approximately estimated
by means of the formula

𝑍 ≃
√︁
−2[𝑙𝑛(𝐿𝐻1) − 𝑙𝑛(𝐿𝐻0)] (4)

where 𝐿𝐻0 (𝐿𝐻1) is the likelihood evaluated for the 𝐻0 (𝐻1) hypothesis [9].

Figure 7: Simulated invariant mass distribution
(pseudo-data). 𝐻0(𝐻1) fit is in red (blue); in the top
right box the best values for the estimated parameters
of the 𝐻1 model are given.

Figure 8: Δ𝑁𝐿𝐿 distribution for about 76M toys for
the baseline configuration of clustering technique. The
red line indicates the Δ𝑁𝐿𝐿𝑑𝑎𝑡𝑎 ≃ 30.27 value for the
pseudo-data distribution in Fig. 7.
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The MC toys method is configured as follows. As first step of each toy iteration, a distribution
based on the background-only model is generated over the whole mass spectrum and the 𝐻0 fit is
performed. As a second step the clustering technique acts on each generated pseudo-experiment as
follows:

1. search for a main seed bin, namely for a bin whose content fluctuates more than 𝑥𝜎 strictly
above the value of the background function in the center of that bin (𝜎 is the statistical error
associated to the considered bin).

2. Add any side bin to the seed bin if it holds a content that fluctuates more than 𝑧𝜎 strictly
above the value of the background function in the center of that bin, otherwise the seed bin
forms a 1-bin cluster.

3. Check also for light seeds, namely bins that fluctuate more than 𝑦𝜎 with 𝑧 < 𝑦 < 𝑥 and with
at least a side bin fluctuating more than 𝑧𝜎. In case of positive result a cluster is formed.

In the third step, a series of independent 𝐻1 fits is performed by cycling on the clusters collected in
the clustering step. At the end of this step the fit with the best Δ𝑁𝐿𝐿 (the test statistic) is chosen.
In total a Δ𝑁𝐿𝐿 distribution is obtained over all the processed MC toys.

A set of baseline clustering parameters (𝑥, 𝑦, 𝑧) = (2.25, 1.50, 1.00) has been chosen in order to
satisfy two concurrent requirements: not missing any possible interesting fluctuation and avoiding
selecting too many irrelevant fluctuations. This baseline configuration has been run on about 76M
pseudo-experiments and the Δ𝑁𝐿𝐿 distribution is shown in Fig. 8, with the superimposed red line
indicating the Δ𝑁𝐿𝐿𝑑𝑎𝑡𝑎 value for the pseudo-data. The global p-value is then estimated by:

𝑝
𝑔𝑙𝑜𝑏
𝑡𝑜𝑦𝑠 ≡ 𝑝 =

∫ ∞

Δ𝑁𝐿𝐿𝑑𝑎𝑡𝑎

𝑓 (Δ𝑁𝐿𝐿)𝑑 (Δ𝑁𝐿𝐿) ≃ 9.820 · 102

7.584 · 107 ≃ 1.295 · 10−5 (5)

This corresponds to the global statistical significance 𝑍𝜎 = Φ−1(1 − 𝑝)𝜎 ≃ 4.22𝜎, through the
inverse function of the cumulative distribution of the standard Gaussian. As expected by considering
the LEE, the global significance is relevantly lower than the estimated local one.

5.1 Evaluation of the possible systematic uncertainty associated to the clustering

In order to test the behavior of the method and to estimate the possible systematic uncertainty
associated to the clustering technique, three sets of configuration parameters, i.e. three values for
the (𝑥, 𝑦, 𝑧) parameters, have been carefully considered. After some tests with different cuts, two
further configurations have been chosen besides the baseline clustering cuts: a set of tighter values
(3.00, 1.75, 1.00) and a set of looser values (2.00, 1.25, 1.00).

The Tab. 1 reports the details about these three clustering configurations such as the average
number of 𝐻1 fits per toy and the fraction of toys with no fit. These three configurations have been
run on a same common set of 45M fluctuations and the three corresponding Δ𝑁𝐿𝐿 distributions
are shown superimposed in Fig. 9. By focusing on the region of interest for the estimation of the
statistical significance, namely the tail of the Δ𝑁𝐿𝐿 distribution (Δ𝑁𝐿𝐿 > 20), it seems that there
is no relevant difference among the three configurations. This can be appreciated by inspecting, in
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Table 1: Mean number of alternative hypothesis fits per toy (< 𝑓 𝑖𝑡𝐻1 >) and fraction of toys with no fit
( 𝑓𝑛𝑜− 𝑓 𝑖𝑡 ) for the three different clustering configurations described in the text.

Clustering configs. < 𝑓 𝑖𝑡𝐻1 > 𝑓𝑛𝑜− 𝑓 𝑖𝑡

Tight (3.00, 1.75, 1.00) 2.2 ∼10%
Baseline (2.25,1.50, 1.00) 4.5 ∼1%
Loose (2.00, 1.25, 1.00) 6.6 0.1%

Fig. 9 and especially in Fig. 10, the normalized deviations of the type (𝑥 − 𝑦)/(𝑥 + 𝑦) of the
other two distributions with respect to the baseline distribution. Finally this is also confirmed by
examining the estimated global significances for the p-values corresponding to different values of
local significances, as reported in Tab. 2. It can be concluded that the systematic uncertainty on the
p-values associated to the method is negligible.

Local Significance 4.0𝜎 4.5𝜎 5.0𝜎 5.5𝜎 6.0𝜎
Tight (3.00, 1.75, 1.00) 2.21 2.91 3.58 4.22 4.87
Baseline (2.25,1.50, 1.00) 2.20 2.91 3.58 4.22 4.87
Loose (2.00, 1.25, 1.00) 2.20 2.91 3.58 4.22 4.87

Table 2: Estimated global significances for the 3 clustering configurations with respect to different local
significance values estimated by Eq. 4.

Figure 9: Δ𝑁𝐿𝐿 distributions for 45M of common
fluctuations for the 3 configurations: baseline (black),
tight (red) and loose (blue).

Figure 10: The same 3 Δ𝑁𝐿𝐿 distributions of Fig. 9
once zoomed into the range 20-45 to inspect their tail
behaviour.
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6. Trial factors and Gross-Vitells method for global significance

At the beginning of the LHC experiments, when the acceleration of GPUs embedded in graphics
cards was not exploited for scientific computing purposes yet, the authors of Ref. [7] proposed an
approximate way to determine the global significance by relying on the asymptotic behaviour of
the likelihood ratio estimators [8]. To take into account the LEE, the correct factor that needs to be
applied to the local significance in order to obtain the global one is called trial factor: 𝑝𝑔𝑙𝑜𝑏≈ 𝑓·𝑝𝑙𝑜𝑐.

The trial factor is related to the peak width, which may be dominated by the experimental
resolution if the intrinsic width is relatively small. When the mass is determined from the data an
empirical evaluation, that can be used as a rule of thumb, gives [10]:

𝑓 ≈ 𝑘 · search mass range
mass resolution

≡ 1
3
· Δ𝑚

𝜎(𝑚)
For the previous considered case: 𝑓 ≈ 1/3 · (18GeV/60MeV) ≃ 100 which makes sense when
considering that going from 5𝜎 (𝑝 ≃2.87· 10−7) to 4𝜎 (𝑝 ≃3.17· 10−5) implies a factor 110.

Gross and Vitells proposed a method to estimate an upper limit for the global p-value when
the signal hypothesis (𝐻1) depends on 𝑠 (nuisance) parameters that are undefined under the null
hypothesis (𝐻0). It is possible to demonstrate [11] [7] that the probability that 𝑞𝑔𝑙𝑜𝑏, that is the
profile likelihood ratio test statistic maximized over ®𝜃, is greater than a given value 𝑐 is bounded by
the following inequality (that can be considered - asymptotically - as an equality):

𝑝𝑔𝑙𝑜𝑏 (𝑐) = 𝑃(𝑞( ®̂𝜃, 𝜇 = 0) > 𝑐) ≤ 𝑃(𝜒2
𝑠 > 𝑐) + ⟨𝑁𝑐⟩

where the first term (related to the local p-value) is a 𝜒2 distribution with 𝑠 dof whereas the second
term is the average number of upcrossings, namely the expected number of times that the local test
statistic curve 𝑞𝑙𝑜𝑐 crosses an horizontal line at a given level 𝑞 = 𝑐 with a positive derivative. In
other words, the second term acts like a correction to the local p-value. For illustration purposes
Fig. 11 shows an example of fluctuation and the number of upcrossings for 𝑞=𝑐0=1.

Figure 11: Number of upcrossings (𝑁𝑐0 = 3), given a threshold 𝑐 = 𝑐0 = 1 (shown by the red line), for a
generic example of fluctuation. Upper plot: in blue the 𝐻0 fit. Bottom plot: 𝑞𝑙𝑜𝑐 =𝑞(𝑚) test statistic values.
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The ⟨𝑁𝑐⟩ can be typically evaluated as average value over an enough large number of MC toys, but
since its value could be very small depending on the level 𝑐, in such cases very large MC samples
would be required for a precise numerical evaluation [8]. Fortunately, a scaling law allows to
extrapolate a value ⟨𝑁𝑐0⟩ (evaluated at a different level 𝑐0) to the desired level 𝑐 [7]:

𝑝𝑔𝑙𝑜𝑏 (𝑐) = 𝑃(𝑞( ®̂𝜃, 𝜇 = 0) > 𝑐) ≤ 𝑃(𝜒2
𝑠 > 𝑐) + ⟨𝑁𝑐0⟩ ·

( 𝑐
𝑐0

)𝑠−1
· 𝑒−(𝑐−𝑐0)/2 (6)

where it is possible to evaluate ⟨𝑁𝑐0⟩ by generating a not too large number of MC toys and 𝑐0 is
chosen in a way that will minimize the resulting uncertainty on the boundary.

A procedure has been setup (within the GooFit framework) to estimate ⟨𝑁𝑐0⟩ for the pseudo-
data configuration previously used. In this example there are two nuisance parameters, the peak
mass 𝑚 and width Γ, and thus 𝑠 = 2 dof. A binned profile likelihood ratio was used as test sta-
tistic, where the number of events (𝑁𝑖), in each bin 𝑖, is assumed to be distributed according to a
Poisson distribution with an expected value 𝐸 (𝑁𝑖) = 𝜇𝑆𝑖 (𝑚, Γ) + (1 − 𝜇)𝐵𝑖 , where 𝜇 is the signal
strength parameter (or signal fraction). The chosen test statistics is the Δ𝑁𝐿𝐿. As reference level
𝑐0= 𝑠 − 1=1 has been chosen. The procedure to estimate ⟨𝑁𝑐0⟩ has been set up as follows:

1. 10K MC toys are configured starting from the generation: the mass distribution is based on
the random fluctuation of the background-only model 𝐻0.

2. For each toy a 𝐻1-based fit is performed after setting the peak mass value to a certain 𝑚
value; this fit is repeated 1000 times changing 𝑚 and Γ values in continuous steps in order to
scan the whole mass spectrum.

3. At each mass point 𝑚 the profile likelihood ratio 𝑞(𝑚) is calculated and the distribution 𝑞(𝑚)
along the mass spectrum is obtained (like in Fig. 11).

4. The number of upcrossings of 𝑞(𝑚) with respect to the 𝑐0 level is thus easily estimated.

It took about 3 days on a single GPU to carry out this 10K MC-based procedure, namely the time
equivalent to 4-5M of MC toys in the clustering approach discussed in Section 5. The result, for
𝑐0=1, was found to be ⟨𝑁𝑐0⟩=7.3 with an uncertainty of 𝜎𝑁𝑐0

=2.4, and it can be used to evaluate
from Eq. 6 the Upper Limit estimated for 𝑝𝑔𝑙𝑜𝑏 (𝑐) with this Gross-Vitells method .

7. Comparison between the Gross-Vitells method and the massive
pseudo-experiments method with a clustering-based scanning approach

Finally it is possible to compare the Upper Limit (UL) for 𝑝𝑔𝑙𝑜𝑏 (𝑐), estimated with the Gross-
Vitells method (G-V method) as discussed in Section 6, with the global p-value 𝑝𝑔𝑙𝑜𝑏𝑡𝑜𝑦𝑠 computed
by means of the Δ𝑁𝑁𝐿 distribution obtained by a massive amount of pseudo-experiments (76M
in the baseline configuration) as discussed in Section 5. Specifically, 𝑝𝑔𝑙𝑜𝑏𝑡𝑜𝑦𝑠 , as a function of 𝑐, is
calculated as a global p-value (as in Eq. 5) now considered as a function of a running chosen value
of Δ𝑁𝐿𝐿 represented by 𝑐:

𝑝
𝑔𝑙𝑜𝑏
𝑡𝑜𝑦𝑠 (𝑐) =

∫ ∞

𝑐

𝑓 (Δ𝑁𝐿𝐿)𝑑 (Δ𝑁𝐿𝐿)
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Figure 12: Comparison of two different methods to estimate a global p-value as a function of a threshold 𝑐
representing a Δ𝑁𝐿𝐿 value. The blue curve is obtained by a method exploiting a massive amount of pseudo-
experiments (MC toys) and addressing the LEE issue by means of a clustering-based scanning technique.
The green curve represents the G-V UL, namely the Upper Limit estimated with the G-V method; dashed
green and red curves delimit the band of the statistical uncertainty associated to the UL due to the very
limited sample of MC toys used in the G-V approach.

Fig. 12 provides the comparison between the two methods. The estimation of the Upper Limit of
the global p-value in the G-V method is compared with the exact function obtained from a huge
amount of MC toys integrated with a clustering approach to take into account the LEE. The G-V
UL is well compatible with the massive MC toys result. However the G-V UL behaves always more
conservatively, overestimating the global p-value and thus underestimating the global significance.

A more quantitative comparison is reported in the Tab. 3 in terms of global statistical signifi-
cance derived from the previous curves and for a few chosen specific thresholds corresponding to
specific local significance values. This table provides the size of the light discrepancy between the
two methods, beyond showing again the remarkable size of the LEE shown already in Tab. 2.

Local Sig. 4.0𝜎 4.5𝜎 5.0𝜎 5.5𝜎 6.0𝜎
G-V method 2.09 2.82 3.48 4.10 4.71
MC Toys 2.20 2.91 3.58 4.22 4.87

Table 3: Global statistical significance values corresponding to specific local ones. G-V Upper Limit
estimates are compared with the exact values derived by the massive MC toys method (for the baseline
clustering configuration).
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8. Conclusions

By exploiting the computing acceleration provided by GPUs, through the GooFit framework
capabilities, it has been possible to explore the applicability limits and investigate the approximation
characterizing modern statistical methods by means of the pseudo-experiments technique. The
studied methods were introduced in High Energy Physics, at the beginning of the LHC era, before
the amplification of the parallel computing paradigm occurred with the advent of GPUs. The
asymptotic behaviour of a likelihood ratio test statistics (Cowan-Cranmer-Gross-Vitells) has been
studied while estimating the local statistical significance of a known signal. The Look-Elsewhere-
Effect has been studied adopting a clustering-based scanning approach to handle a huge amount of
MC toys, while estimating the global statistical significance of a new signal. In the latter context
the validity of the approximation of the Gross-Vitells method has been investigated as well.
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