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1. Introduction

If we consider that, at the regime of small distances (Planck length), the spatial coordinates
exhibit a noncommutative behaviour, then the structure of the spacetime at this regime could be
parametrized by the framework of noncommutative geometry. Referring now to higher distances
(LHC scale) the Strong, Weak and Electromagnetic interactions are formulated by gauge theories
and are described together in the Standard Model. At much smaller distances (but larger then
Planck distances) the three interactions are studied in the interesting framework of Grand (Gauge)
Unified Theories. Although none of the above two pictures include the gravitational interaction,
there does exist a gauge-theoretic approach of it, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], which
is based on gauging the Lorentz and Poincaré groups in the pioneer works of Utiyama and Kibble
[1, 2] and was extended by other authors [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] gauging the de Sitter
group, SO(1,4), spontaneously broken by a scalar field to the Lorentz group, SO(1,3). In this
context the Weyl gravity has been constructed as a gauge theory of the four-dimensional conformal
group [8, 9]. In the noncommutative framework in order to result with models of noncommutative
gravity [14, 15, 16, 17, 18, 19, 20, 21, 22] the above gauge-theoretic approach of gravity has been
taken into consideration and translated in the noncommutative framework making use of the well-
established formulation of gauge theories on noncommutative spaces.

In the above treatments the authors make use of the concepts of constant noncommutativity
(Moyal-Weyl), the ?-product and the Seiberg-Witten map [23]. Besides the above approaches,
construction of noncommutative gravitational models can be achieved using the noncommutative
realization of matrix geometries [24, 25, 26, 27, 28, 29, 30]. Also, for alternatives see [31, 32, 33]
(see also [34]). In general, it is understood that the formulation of noncommutative gravity is ac-
companied by the breaking of Lorentz invariance by noncommutative deformations. However, the
existence of “covariant noncommutative spaces” [36, 37] which preserve the Lorentz invariance,
allows the construction of field theories from noncommutative deformations. [38, 39, 40, 41, 42,
43, 44, 45, 46, 47] (see also [48, 49, 50, 51, 52]).

The purpose of this article is to present and highlight the features of a four-dimensional non-
commutative gravity model, constructed recently [45] as a gauge theory on a fuzzy space, the dS4.
Drawing motivation from the work of Heckman-Verlinde [37], who were based on Yang’s early
publication [36], we have constructed a covariant fuzzy dS space with the property of preserving
Lorentz invariance. Requiring this property led to the enlargement of the isometry group of the
fuzzy dS4 from SO(1,4) to SO(1,5). Next, on the above (covariant) noncommutative space, the
gauging of a subgroup of the total isometry took place, leading to the enlargement of the gauge
group in a fixed representation. During the development of the gauge theory, the requirement of
the covariance of the field strength tensor led to the addition of a 2-form gauge field. Eventually,
our proposition of the action is of Yang-Mills type, including the kinetic term of the 2-form gauge
field added earlier.

2. Approaches of gravity as gauge theory

2.1 Gauge-theoretic approach of 4-d Einstein’s Gravity

Four-dimensional gravity is described, in a geometric way, by the successful Theory of Gen-
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eral Relativity. On the other hand, the gauge-theoretic alternative description of gravity aims, in
principle, at a possible unification of the gravitational interaction with the rest ones, [1, 2, 4, 5, 6, 7].
In order to approach four-dimensional gravity in a gauge-theoretic way, first one has to employ the
vierbein formulation of General Relativity. Then if a cosmological constant is present, according to
its sign, the corresponding spaces on which the gauge theories are constructed are the Minkowski
M4, de Sitter dS4 and anti-de-Sitter AdS4, which are based on the Poincaré, ISO(1,3), de Sitter,
SO(1,4), and Anti-de Sitter, SO(2,3), gauge groups, respectively. The above isometry groups of
the spaces are the indicated gauge groups in each case. Let us first recall the case in which cos-
mological constant is absent, that is the case of the Poincaré group. In this case, the algebra is
determined by the following commutation relations:

[Mab,Mcd ] = 4η[a[cMd]b] , [Pa,Mbc] = 2ηa[bPc] , [Pa,Pb] = 0 , (2.1)

where ηab is the mostly positive metric tensor of the Minkowski spacetime and the generators Mab

and Pa correspond to the Lorentz transformations and the local translations, respectively. Then the
gauge potential, Aµ , is introduced which, by definition, takes values within the Poincaré algebra:

Aµ(x) = eµ
a(x)Pa +

1
2

ωµ
ab(x)Mab , (2.2)

where the gauge fields associated with the Pa and Ma, i.e. eµ
a and ωµ

ab, are identified as the
vierbein and spin connection, respectively. The gauge transformation of the connection Aµ is given
by:

δAµ = ∂µε +[Aµ ,ε] , (2.3)

in which ε = ε(x) is the parameter of the gauge transformation, which is an element of the algebra
and therefore takes values in it:

ε(x) = ξ
a(x)Pa +

1
2

λ
ab(x)Mab . (2.4)

Combination of the equations (2.2) and (2.4) along with (2.3) produces the transformations of the
gauge fields:

δeµ
a = ∂µξ

a +ωµ
ab

ξb−λ
a

beµ
b , (2.5)

δωµ
ab = ∂µλ

ab−2λ
[a

cωµ
cb] . (2.6)

The standard procedure when building gauge theories continues with the definition of the corre-
sponding field strength tensor:

Rµν(A) = 2∂[µAν ]+[Aµ ,Aν ] . (2.7)

Being also valued in the algebra of generators it is written as an expansion on them:

Rµν(A) = Rµν
a(e)Pa +

1
2

Rµν
ab(ω)Mab , (2.8)

where Rµν
a and Rµν

ab are the component tensors, i.e. the curvatures corresponding to the com-
ponent gauge fields, identified as the torsion and curvature, respectively. Their explicit forms are
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obtained after replacing equations (2.2) and (2.8) into the (2.7):

Rµν
a(e) = 2∂[µeν ]

a−2ω[µ
abeν ]b , (2.9)

Rµν
ab(ω) = 2∂[µων ]

ab−2ω[µ
ac

ων ]c
b . (2.10)

Regarding the action of the theory, the indicated choice according to the standard procedure of
building gauge theories is an action of Yang-Mills type, gauge invariant under ISO(1,3) transforma-
tions. However, this is not the case since, such a choice, would lead to an action not identical to the
Einstein-Hilbert, which we already know that is the desired one. For this reason, less straightfor-
ward route is necessary to be followed. Along these lines, instead of the Poincaré group, it is rather
more convenient to gauge the SO(1,4) group and incorporate a spontaneous symmetry breaking
mechanism induced by the presence of a scalar field in the fundamental representation [4, 6].

For this specific purpose, the alternative choice of the four-dimensional de Sitter group is
preferred to the one of the Poincaré because, although the number of the generators is equal in
two cases, in the de Sitter case the generators are distributed on equal footing. In this context, the
spontaneous symmetry breaking due to the scalar field leads to the breaking of the part associated
to the translations and results to a more constrained theory involving the Ricci scalar along with a
Gauss-Bonnet term with vanishing torsion. The resulting action of the theory is Lorentz invariant
and is actually the Einstein-Hilbert action.

In a nutshell, as far as the transformations of the fields and the calculation of the tensors is
concerned, Einstein’s gravity can be described as a gauge theory of the Poincaré group. In turn,
the dynamical part, that is the action of the theory, is obtained by making us of the de Sitter group
instead along with an extra scalar field, the presence of which induces appropriate spontaneous
breaking which leads to the correct Einstein-Hilbert action.

2.2 Gauge-theoretic approach of Weyl gravity

Another successful translation of a gravity theory into the gauge-theoretic context is that of
Weyl gravity theory. In this case, the group to be gauged is the four-dimensional conformal group,
that is SO(2,4). The transformations of the fields and the curvature tensors (derived from the
field strength tensor) are obtained straightforwardly. The gauge invariant action that is considered
is of Yang-Mills type and is broken by imposing particular conditions on the curvature tensors.
Imposition of these constraints recover the desired scale invariant Weyl action [8, 9, 10] (see also
[11, 12]).

The generators of the conformal algebra of SO(2,4) comprises of the local translations (Pa),
the Lorentz transformations (Mab), the conformal boosts (Ka) and the dilatations (D). The algebra
they satisfy is determined by the following commutation relations:

[Mab,Mcd ] = 4M [d
[a δ

c]
b] , [Mab,Pc] = 2P[aδb]c , [Mab,Kc] = 2K[aδb]c

[Pa,D] = Pa , [Ka,D] =−Ka , [Pa,Kb] = 2(δabD−Mab) ,
(2.11)

where a,b,c,d = 1...4. The gauging procedure dictates that the gauge potential, Aµ , of the theory
is written down as expansion on the algebra generators:

Aµ = e a
µ Pa +

1
2

ω
ab

µ Mab +bµD+ f a
µ Ka , (2.12)
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in which it is evident that each generator admits a gauge field. The vierbein and the spin connection
are identified as gauge fields of the theory, as they were in the previous case of Einstein gravity.
The gauge potential, (2.12), is transformed under the following rule:

δεAµ = Dµε = ∂µε +[Aµ ,ε] , (2.13)

in which the inclusion of a gauge transformation parameter has taken place. The parameter is
valued in the Lie algebra of the SO(2,4), therefore it is written down in the following expansion
form:

ε = ε
a

P Pa +
1
2

ε
ab

M Mab + εDD+ ε
a

K Ka . (2.14)

The transformations of the various gauge fields is obtained by the combination of equations (2.13),
(2.12) and (2.14):

δe a
µ = ∂µε

a
P +2ieµbε

ab
M − iω ab

µ εPb−bµε
a

K + f a
µ εD ,

δω
ab

µ =
1
2

∂µε
ab

M +4ie a
µ ε

b
P +

i
4

ω
ac

µ ε
b

M c + i f a
µ ε

b
K ,

δbµ = ∂µεD− e a
µ εKa + f a

µ εPa ,

δ f a
µ = ∂µε

a
K +4ie a

µ εD− iω ab
µ εKb−4ibµε

a
P + i f b

µ ε
a

M b .

(2.15)

In turn, the field strength tensor is determined by the relation:

Rµν = 2∂[µAν ]− i[Aµ ,Aν ] (2.16)

and is also expanded on the various generators:

Rµν = R̃ a
µνPa +

1
2

R ab
µν Mab +Rµν +R a

µνKa . (2.17)

Then putting together equations (2.16) and (2.17) lead to the following expressions of the various
component curvature tensors:

R a
µν (P) = 2∂[µe a

ν ] + f a
[µ bν ]+ e b

[µ ω
ac

ν ] δbc,

R ab
µν (M) = ∂[µω

ab
ν ] +ω

ca
[µ ω

db
ν ] δcd + e a

[µ e b
ν ] + f a

[µ f b
ν ] ,

Rµν(D) = 2∂[µbν ]+ f a
[µ e b

ν ] δab,

R a
µν (K) = 2∂[µ f a

ν ] + e a
[µ bν ]+ f b

[µ ω
ac

ν ] δbc .

(2.18)

The choice of the action of the theory is of Yang-Mills type that is gauge invariant under the
SO(2,4) symmetry. This symmetry breaks after the imposition of specific constraints [8, 9, 10],
specifically the torsionless condition, R(P) = 0 along with an additional constraint on the R(M)

tensor. If these constraints are solved algebraically, they yield expressions of the gauge fields ω ab
µ

and f a
µ in terms of the rest independent fields e a

µ and bµ . Furthermore, the field bµ can be fixed
to the specific gauge of bµ = 0. Therefore, taking all the constraints into account, the initial action
takes the form of the well-known Weyl action, which is invariant under diffeomorphisms and scale
transformations1.

1Besides the above breaking of the conformal symmetry, there exists another breaking route via constraints [46],
which leads to a Lorentz invariant action, more explicitly the Einstein-Hilbert action.
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From our point of view, such an outcome could be produced after employing an alternative
symmetry breaking mechanism, induced by two scalar fields in the fundamental representation of
SO(2,4) [47]. The spontaneous symmetry breaking could be viewed as a generalization of the case
of the de Sitter group breaking down to the Lorentz group by a single scalar in the fundamental
representation of SO(1,4) (see previous section 2.1).

3. Gauge theories on noncommutative spaces

In this section we include the basics regarding the construction of gauge theories on noncom-
mutative spaces, since it is fundamental for our purposes.

In noncommutative geometry, gauge fields arise in a very natural way and are intertwined
with the notion of covariant coordinate [53], that is the noncommutative analogue of the covariant
derivative as we will stress later.

Let us now begin with considering a field φ(Xa) on a fuzzy space, depending on the noncom-
muting coordinates Xa. The field belongs to a representation of a gauge group G, therefore an
infinitesimal gauge transformation δφ with gauge transformation parameter λ (Xa) is given by:

δφ(X) = λ (X)φ(X) . (3.1)

In case the transformation parameter λ (X) is simply a function of the coordinates, Xa, then it is
considered as an infinitesimal Abelian transformation and the gauge group is G = U(1), while in
case λ (X) is a P×P matrix, then it can be viewed as a gauge transformation of the non-Abelian
gauge group G = U(P), i.e. the group including all hermitian P×P matrices. It is worth-noting
that the coordinates are invariant under transformations of the gauge group, G, that is δXa = 0. In
turn, let us perform a gauge transformation on the product of a coordinate and the field:

δ (Xaφ) = Xaλ (X)φ , (3.2)

The above transformation is not a covariant one since, in general, it holds:

Xaλ (X)φ 6= λ (X)Xaφ . (3.3)

Drawing ideas from the methodology of ordinary gauge theories, in which covariant derivative is
defined for similar reasons, in the noncommutative case, the covariant coordinate, φa, is introduced
by its transformation rule:

δ (φaφ) = λφaφ , (3.4)

which is satisfied in case that:
δ (φa) = [λ ,φa] . (3.5)

Eventually, the covariant coordinate is defined as:

φa ≡ Xa +Aa , (3.6)

where it is straightforward to identify Aa as the gauge connection of the theory. Putting together
equations (3.5), (3.6), the gauge transformation of the connection, Aa , is obtained:

δAa =−[Xa,λ ]+ [λ ,Aa] , (3.7)

5
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giving an a posteriori explanation of the interpretation of Aa as a gauge field 2. Accordingly, the
corresponding field strength tensor, Fab , is defined as follows:

Fab ≡ [Xa,Ab]− [Xb,Aa]+ [Aa,Ab]−Cc
abAc = [φa,φb]−Cc

abφc , (3.8)

which is easily proven to be covariant under a gauge transformation,

δFab = [λ ,Fab] . (3.9)

The above scheme will be used in the following sections in the construction of gravity model as
gauge theory on fuzzy covariant space.

4. Four-dimensional noncommutative gravity

We proceed with the construction of a model of four-dimensional noncommutative gravity as
a gauge theory on a covariant fuzzy space. First, we need to present the four-dimensional fuzzy
space we defined in order to build the theory on it.

4.1 Four-dimensional fuzzy covariant spaces of dS4 and S4

Here we construct the fuzzy version of four-dimensional de Sitter space, dS4, as it is the one we
use as the background space in our model. The continuous dS4 can be be defined as an embedding
in the five-dimensional Minkowski space:

η
MNxMxN = R2 , (4.1)

M,N = 0, . . . ,4 and ηMN is the metric tensor of the five-dimensional Minkowski spacetime, ηMN =

diag(−1,+1,+1,+1,+1). The construction of its fuzzy analogue is achieved if the coordinates,
Xm, are considered, instead of numbers, to be operators that fail to commute with each other:

[Xm,Xn] = iθmn , (4.2)

where the spacetime indices are m,n= 1, . . . ,4. Drawing lessons from the well-known fuzzy sphere
case [24, 25], in which the corresponding coordinates-operators are corresponded to the (rescaled)
three generators of SU(2) assigned in an N-dimensional representation, the right hand side in
eq(4.2), has to be identified with a generator of the underlying algebra. Such an identification
ensures covariance, i.e θmn = C r

mn Xr, with Cmnr being a rescaled Levi-Civita symbol. Identified
otherwise, if for instance the right hand side in eq(4.2) was fixed to an antisymmetric tensor, then
the Lorentz invariance would be violated. However, in the fuzzy de Sitter case in which we are
interested, such an identification cannot be achieved, since the algebra would not be closing [37] 3.
Since covariance is an indispensable property of the space we are building, a promising suggestion
[36, 37] is to make use of a group of larger symmetry, in which all generators and the noncommu-
tativity would be included in it. Targeting minimal extension of the symmetry, we are led to adopt

2For more details see [34]
3For more information on this issue, see [49, 50], where the same problem is encountered in their construction of

the fuzzy four-sphere.
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the SO(1,5) group. Therefore, a fuzzy version of dS4 space, respecting covariance, is obtained
after the symmetry is enlarged to the SO(1,5) [45]. To facilitate the whole construction and the
calculations we adopt the Euclidean signature, which means that instead of the SO(1,5), the sym-
metry group we consider is that of SO(6). Thus we have resulted with the Euclidean version of the
covariant fuzzy dS4, that is a covariant fuzzy S4. To describe this space an approach similar to the
fuzzy sphere is possible, specifically we will make use of the approximation by finite-dimensional
matrices.

Explicit formulation of the above fuzzy space is performed by considering the SO(6) (anti-
symmetric) generators, JAB, with A,B = 1, . . . ,6, which obey the following commutation relation:

[JAB,JCD] = i(δACJBD +δBDJAC−δBCJAD−δADJBC) . (4.3)

Writing down these generators as decompositions in SO(4) notation4, the various component gen-
erators are identified as follows:

Jmn =
1
h̄ Θmn, Jm5 =

1
λ

Xm, Jm6 =
λ

2h̄ Pm, J56 =
1
2 h , (4.4)

where m,n = 1, . . . ,4. For reasons of correct dimensionality, an elementary length, λ , has been
introduced in the above identifications. The coordinates and momenta operators as well as the
noncommutativity tensor are denoted as Xm, Pm and Θmn, respectively, satisfying the following
commutation relations:

[Xm,Xn] = i
λ 2

h̄
Θmn, [Pm,Pn] = 4i

h̄
λ 2 Θmn, (4.5)

[Xm,Pn] = ih̄δmnh, [Xm,h] = i
λ 2

h̄
Pm, (4.6)

[Pm,h] = 4i
h̄

λ 2 Xm , (4.7)

[Xm,Θnp] = ih̄(δmpXn−δmnXp) (4.8)

[Pm,Θnp] = ih̄(δmpPn−δmnPp) (4.9)

[Θmn,Θpq] = ih̄(δmpΘnq +δnqΘmp−δnpΘmq−δmqΘnp) (4.10)

[h,Θmn] = 0 . (4.11)

It is notable to refer that the above algebra, in contrast to the Heisenberg algebra, admits finite-
dimensional matrices representing the operators Xm, Pm and Θmn and therefore the spacetime ob-
tained above is considered to be a finite quantum system [37, 51, 54].

4.2 Gravity as gauge theory on the four-dimensional fuzzy covariant space

In the procedure of the construction of Einstein gravity as gauge theory (section 2.1), in which
the isometry group (the Poincaré group) was the one that was gauged, accordingly in this case the
gauge group is the isometry group of the Euclidian version of the fuzzy dS4 space, i.e. the SO(5),

4The embedding path we consider is SO(6)⊃ SO(5)⊃ SO(4).
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viewed as a subgroup of the SO(6) group. In general, in noncommutative gauge theories, anticom-
mutators of the generators of the algebra play a key role, as we have already explained in detail in
our previous works [38, 39] (see also [17]). Specifically in the current case, the anticommutation
relations of the generators of the gauge group, SO(5), produce operators that, in principle, are not
elements of the algebra. The treatment to this pathology is to fix the representation in which the
generators are assigned and then include all operators produced by the anticommutators of the gen-
erators into the algebra, extending the initial Lie algebra. Following the above reasoning, we are
eventually led to extend SO(5) to SO(6)×U(1) (∼U(4)), with the generators being 4×4 matrices
in the spinor representation of SO(6) (or the fundamental of SU(4)), 4.

Aiming at the specific expressions of the matrices representing the generators, the Euclidean
Γ-matrices are employed, satisfying the following well-known anticommutation relation:

{Γa,Γb}= 2δab1, (4.12)

where a,b = 1, . . . ,4. The Γ5 matrix is defined as Γ5 = Γ1Γ2Γ3Γ4. Therefore, it is deduced that the
generators of the SO(6)×U(1) gauge group are identified as the following matrices:

a) Six generators of the Lorentz transformations: Mab =− i
4 [Γa,Γb] =− i

2 ΓaΓb ,a < b,

b) four generators of the conformal boosts: Ka =
1
2 Γa,

c) four generators of the local translations: Pa =− i
2 ΓaΓ5,

d) one generator for special conformal transformations: D =−1
2 Γ5 and

e) one U(1) generator: 1.

The form of the Γ-matrices is determined by tensor products of the Pauli matrices:

Γ1 = σ1⊗σ1, Γ2 = σ1⊗σ2, Γ3 = σ1⊗σ3

Γ4 = σ2⊗1, Γ5 = σ3⊗1 .

It is straightforward to calculate the commutation relations of the various operators:

[Ka,Kb] = iMab, [Pa,Pb] = iMab

[Xa,Pb] = iδabD, [Xa,D] = iPa

[Pa,D] = iKa, [Ka,Pb] = iδabD, [Ka,D] =−iPa

[Ka,Mbc] = i(δacKb−δabKc)

[Pa,Mbc] = i(δacPb−δabPc)

[Mab,Mcd ] = i(δacMbd +δbdMac−δbcMad−δadMbc)

[D,Mab] = 0 .

(4.13)

After the determination of the commutation relations of the generators, the process of building
a noncommutative gauge theory can be performed in a straightforward way. First, the covariant

8
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coordinate of the theory is defined as:

X̂m = Xm⊗1+Am(X) . (4.14)

The coordinate X̂m is covariant by construction and this property is expressed as:

δ X̂m = i[ε, X̂m] , (4.15)

where ε(X) is the transformation parameter of the gauge theory, which is a function of the noncom-
mutative coordinates (N×N matrices), Xm, but, at the same time, it is valued in the SO(6)×U(1)
algebra. Therefore, it can be written as a decomposition on the sixteen generators of the algebra:

ε = ε0(X)⊗1+ξ
a(X)⊗Ka + ε̃0(X)⊗D+λab(X)⊗Σ

ab + ξ̃
a(X)⊗Pa . (4.16)

Combination of the equations (4.14), (4.15) and (4.16) yields the transformation rule of Am, since
it holds that δXm = 0. In accordance with the commutative case, the transformation rule of Am

implies that it can be interpreted as the connection of the gauge theory.
The connection Am follows the same pattern with the ε , that is taking values in the SO(6)×

U(1) algebra, besides that it is a function of the coordinates Xm of the fuzzy space dS4. This leads
to the following relation:

Am(X) = e a
m (X)⊗Pa +ω

ab
m (X)⊗Σab(X)+b a

m (X)⊗Ka(X)

+ ãm(X)⊗D+am(X)⊗1 ,
(4.17)

in which various gauge fields have been introduced for every generator of the algebra of SO(6)×
U(1). The component gauge fields that were introduced above are functions of the space coor-
dinates, Xm, meaning that they have the form of N ×N matrices, where N is the dimension of
the representation of the coordinates. In turn, among the gauge fields and their corresponding
generators, the tensor product is used, because of the fact that the factors are matrices of different
dimensions, since generators are represented by 4×4 matrices. Concluding the reasoning, all terms
of the expression of the gauge connection are 4N×4N matrices.

In turn, the covariant coordinate is also given as:

X̂m = Xm⊗1+ e a
m (X)⊗Pa +ω

ab
m (X)⊗Σab +b a

m ⊗Ka + ãm⊗D+am⊗1 . (4.18)

The next step is to calculate the field strength tensor of the gauge theory we are building. In our
case, the field strength tensor is defined as:

Rmn = [X̂m, X̂n]−
iλ 2

h̄
Θ̂mn , (4.19)

in which Θ̂mn = Θmn ⊗ 1 +Bmn. The Bmn is a 2-form gauge field, valued in the algebra of
SO(6)×U(1). The introduction of Bmn took place in order to make the field strength tensor co-
variant5. The presence of Bmn field affects the form of the action of the theory, with an addition of
a kinetic term of the form:

SB = TrtrĤmnpĤ
mnp . (4.20)

5More information on this issue is given in Appendix A of the original paper of [45].
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The Ĥmnp field strengthis a covariant tensor, therefore the above action is invariant under a gauge
transformation.

Belonging in the underlying algebra, the field strength tensor of the gauge connection, (4.19),
can be expanded in terms of the component curvature tensors:

Rmn(X) = R ab
mn (X)⊗Σab + R̃ a

mn(X)⊗Pa +R a
mn(X)⊗Ka

+ R̃mn(X)⊗D+Rmn(X)⊗1 .
(4.21)

Having defined all necessary elements, the transformations of the gauge fields and the component
curvature tensors can now be obtained. The explicit expressions and calculations can be found in
the first paper of ref.[45].

4.3 The action and symmetry breaking by constraints

Let us now focus on the dynamics of the theory determining the action. In our case it is natural
to consider one of Yang-Mills type6:

S = Trtr{Rmn,Rrs}εmnrs , (4.22)

where Tr denotes the trace over the coordinates which are N×N matrices and stands in the place
of integration. The tr denotes the trace over the generators of the algebra.

Nevertheless, the desired action of the theory is that of Lorentz, in Euclidean signature, the
SO(4). A brute force way to achieve this is to render every tensor not related to the Lorentz
subgroup as vanishing, with minor exception of the U(1) tensor. This way, a breaking of the
initial SO(6)×U(1) symmetry to the SO(4)×U(1) is achieved. However, simply by counting the
degrees of freedom, adoption of the above breaking would lead to an overconstrained theory. For
this reason, we perform the symmetry breaking imposing less straightforward constraints [45]. In
turn, the first condition is the torsionless condition:

R̃ a
mn(P) = 0 , (4.23)

which is also encountered in the cases of the Einstein and conformal gravity theories when de-
scribed as gauge theories. Now, the fact that the gauge field b a

m can be viewed as a second vielbein
of the theory, would render the theory as bimetric, which is not what we desire in the this case.
Therefore, in order to avoid the bimetric interpretation, it is preferable to consider e a

m = b a
m when

solving the constraint. This choice leads to an expression of the spin connection ω ab
m in terms of

the independent fields, e a
m ,am, ãm. The explicit expression of the spin connection in terms of the

other fields is obtained after employing the following two identities:

δ
abc
f gh = ε

abcd
ε f ghd and

1
3!

δ
abc
f gha f gh = a[ f gh] . (4.24)

Solution of the constraint R̃(P) = 0 leads to:

ε
abcd [e b

m ,ω
cd

n ]− i{ω ab
m ,enb}=−[Dm,e a

m ]− i{e a
m , ãm} , (4.25)

6A Yang-Mills action of a theory on the fuzzy dS4 space is gauge invariant. For details see Appendix A of the first
paper of [45].
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where Dm = Xm+am, that is the covariant coordinate of an Abelian noncommutative gauge theory.
The above equation leads to the following two:

ε
abcd [e b

m ,ω
cd

n ] =−[Dm,e a
m ] and {ω ab

m ,enb}= {e a
m , ãn} . (4.26)

The expression of the spin connection in terms of the independent fields is given after taking into
account the identities, (4.24):

ω
ac

n =−3
4

em
b(−ε

abcd [Dm,end ]+δ
[bc{e a]

n , ãm}) . (4.27)

According to [55], one could make use of the argument that the vanishing of the field strength
tensor in a gauge theory can lead to the vanishing of the corresponding gauge field. However, in
the case of R̃(P) = 0 we do not apply the above argument, e a

µ = 0, because this choice would lead
to a degenerate metric tensor of the space [13]. On the other hand, the field that can be fixed in a
gauge in which it is set to zero is the ãm. This fixing, ãm = 0, will, in turn, modify the expression of
the spin connection, (4.27), producing an even more simplified expression of the spin connection
in terms of the vielbein:

ω
ac

n =
3
4

em
bε

abcd [Dm,end ] . (4.28)

It should be noted that the Rmn(1) tensor, related to the noncommutativity of the space, is not con-
sidered as vanishing. The U(1) part of the initial theory remains unbroken in the resulting theory
after the breaking as it is still a theory on a noncommutative space. However, the corresponding
field, am, will vanish in case the commutative limit of the broken theory is considered. In this limit,
the noncommutativity is relieved, am decouples being superheavy and also the gauge theory is just
SO(4). An alternative way to break the SO(6) gauge symmetry down to the desired SO(4) would
be achieved with the induction of a spontaneous symmetry breaking by including in the theory
two extra scalar fields in the 6 representation of SO(6) [47], translating the argument developed
in the case of conformal gravity to the noncommutative framework. Our expectation is that the
spontaneous symmetry breaking induced by the scalars would also lead to a constrained theory as
the above by the imposition of the constraints (4.23).

Now, after the symmetry breaking, i.e. including the constraints, the action will be:

S = 2Tr(R ab
mn R cd

rs εabcdε
mnrs +4R̃mnRrsε

mnrs

+
1
3

H ab
mnp Hmnpcd

εabcd +
4
3

H̃mnpHmnp) .
(4.29)

Eventually, writing down the explicit expressions of the component tensors as well as the ω gauge
field in terms of the non-vanishing gauge fields, (4.28) and then varying with respect to the inde-
pendent gauge fields would produce the equations of motion.

5. Conclusions

In this review we presented a four-dimensional gravity model as a gauge theory on a fuzzy ver-
sion of the (Euclidian version) four-dimensional de Sitter space. The constructed fuzzy space, dS4,
consists a four-dimensional covariant noncommutative space. In turn, although the initial gauge
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group was the isometry group of dS4, that is SO(1,4), we were led to extend it to SO(1,5)×U(1)
for the sake of the inclusion of the anticommutators of the generators in a fixed respresentation.
Then, in accordance to the standard procedure, we moved on by calculating the transformations
of the fields and the component curvature tensors. Since we were aiming to result with a theory
respecting the SO(1,3) “Lorentz" symmetry, we were led to impose certain conditions (constraints)
in order to break the symmetry of the initial gauge group. After the breaking, including the solu-
tions of the constraints, the action takes its final form and with variation the equations of motion
are obtained. The latter will be included in future work. It should be noted that, at the point before
the application of the symmetry breaking, the expressions of the nnoncommutative gauge theory
we constructed reduce to the ones of the conformal gravity in the commutative limit. Last, it should
be also highlighted that the above is a matrix model which gives insight into the gravitational in-
teraction in the high-energy regime where noncommutativity can be considered and also giving
promises for improved UV properties as compared to ordinary gravity. The latter, as well as the
inclusion of matter fields is a subject of further study.
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[18] M. Dimitrijević Ćirić, B. Nikolić and V. Radovanović, “Noncommutative SO(2,3)? gravity:
Noncommutativity as a source of curvature and torsion,” Phys. Rev. D 96 (2017) no.6, 064029
doi:10.1103/PhysRevD.96.064029 [arXiv:1612.00768 [hep-th]].

[19] S. Cacciatori, D. Klemm, L. Martucci and D. Zanon, “Noncommutative Einstein-AdS gravity in
three-dimensions,” Phys. Lett. B 536 (2002) 101 doi:10.1016/S0370-2693(02)01823-3
[hep-th/0201103].

[20] S. Cacciatori, A. H. Chamseddine, D. Klemm, L. Martucci, W. A. Sabra and D. Zanon,
“Noncommutative gravity in two dimensions,” Class. Quant. Grav. 19 (2002) 4029
doi:10.1088/0264-9381/19/15/310 [hep-th/0203038].

[21] P. Aschieri and L. Castellani, “Noncommutative Chern-Simons gauge and gravity theories and their
geometric Seiberg-Witten map,” JHEP 1411 (2014) 103 doi:10.1007/JHEP11(2014)103
[arXiv:1406.4896 [hep-th]].

[22] M. Banados, O. Chandia, N. E. Grandi, F. A. Schaposnik and G. A. Silva, “Three-dimensional
noncommutative gravity,” Phys. Rev. D 64 (2001) 084012 doi:10.1103/PhysRevD.64.084012
[hep-th/0104264].

[23] N. Seiberg and E. Witten, “String theory and noncommutative geometry,” JHEP 9909 (1999) 032
doi:10.1088/1126-6708/1999/09/032 [hep-th/9908142].

[24] J. Madore, Class. Quant. Grav. 9 (1992) 69. doi:10.1088/0264-9381/9/1/008
G. Manolakos and G. Zoupanos, Phys. Part. Nucl. Lett. 14 (2017) no.2, 322.
doi:10.1134/S1547477117020194

13



P
o
S
(
C
O
R
F
U
2
0
1
9
)
2
3
6

Noncommutative Gravity G. Manolakos

[25] G. Fiore and F. Pisacane, Lett Math Phys (2020) doi:10.1007/s11005-020-01263-3
[arXiv:1906.01881 [math-ph]].
G. Fiore and F. Pisacane, PoS CORFU 2017 (2018) 184 doi:10.22323/1.318.0184 [arXiv:1807.09053
[math-ph]].
G. Fiore and F. Pisacane, J. Geom. Phys. 132 (2018) 423 doi:10.1016/j.geomphys.2018.07.001
[arXiv:1709.04807 [math-ph]].

[26] H. Steinacker, “Emergent Geometry and Gravity from Matrix Models: an Introduction,” Class. Quant.
Grav. 27 (2010) 133001 doi:10.1088/0264-9381/27/13/133001 [arXiv:1003.4134 [hep-th]].

[27] V. P. Nair, “Gravitational fields on a noncommutative space,” Nucl. Phys. B 651 (2003) 313
doi:10.1016/S0550-3213(02)01061-1 [hep-th/0112114].

[28] Y. Abe and V. P. Nair, “Noncommutative gravity: Fuzzy sphere and others,” Phys. Rev. D 68 (2003)
025002 doi:10.1103/PhysRevD.68.025002 [hep-th/0212270].

[29] P. Valtancoli, “Gravity on a fuzzy sphere,” Int. J. Mod. Phys. A 19 (2004) 361
doi:10.1142/S0217751X04017598 [hep-th/0306065].

[30] V. P. Nair, “The Chern-Simons one-form and gravity on a fuzzy space,” Nucl. Phys. B 750 (2006) 321
doi:10.1016/j.nuclphysb.2006.06.009 [hep-th/0605008].
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