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Introduction

κ-Minkowski [2–4] is the noncommutative spacetime whose coordinates satisfy the following
commutation relations

[x0,xi] =
i
κ

xi ,
[
xi,x j]= 0 , i, j = 1, . . . ,3, (1)

where the parameter κ has the dimension of an energy (in h̄ = 1 units). The brackets in (1) close
the Lie algebra an3 [5–7] . More in general, any algebra of the form [xµ ,xν ] = i(vµxν − vνxµ),
µ = 0, . . . ,3, where vµ is any set of four real numbers, is isomorphic to (1) by a linear redefinition
of generators. The algebra (1) is unchanged under the left action

∆L[xµ ] = Λ
µ

ν ⊗ xν +aµ ⊗1, (2)

of the elements aµ , Λ
µ

ν generating κ-Poincaré quantum group [2–4, 8–13]. In this sense, κ-
Minkowski is the “quantum homogeneous space” of the κ-Poincaré quantum group, and the x0

and the xi are interpreted as the time and spatial coordinates respectively.
Interestingly, the κ-Minkowski spacetime is associated to a curved momentum space; as it

was first discussed in [14], and then also in a variety of works [14–20]. The curvature of the
momentum space can be understood in terms of the plane waves obtained by exponentianting an3.
Since the algebra is not abelian,the plane waves (elements of the AN3 group) have a non linear
composition rule [21, 22], which reduces to the familiar one when wave vectors are much smaller
than κ [23, 24]. The Lie group theory ensures that the wave parameters can be regarded as curved
coordinates over the group manifold AN3. The above mentioned plane waves can be used to discuss
field theories on κ-Minkowski [25–29]. Hence, it is legitimate to associate the momentum space
of on κ−Minkowski with the group manifold AN3. There are more then one momentum spaces
compatible with the κ-Minkowski spacetime [19, 30]. In [1] it has been proposed a method to
obtain and categorize these momentum spaces .

In this paper we will discuss the isometries of these momentum spaces.

1. Momentum Spaces of κ−Minkowski

It has been noticed in [14] that the algebra so(4,1) has a subalgebra which is isomorphic
to (1): xµ ∼M0µ +M4µ , where MAB (A,B = 0, . . . ,4) are the standard antisymmetric 5×5 matrix
representation of Lorentz generators. This isomorphism induces a five dimensional representation
of x0 and xi

ρ(x0) =− i
κ

 0 0 1
0 0̂ 0
1 0 0

 , ρ(xi) =− i
κ

 0 ei 0
ei 0̂ ei

0 −ei 0

 , (1.1)

where ea
i = δ a

i , three-dimensional vector quantities are in boldface, 0̂ is the zero 3× 3 matrix.
The (1.1) is a ∗-representation under the involution compatible with the Lorentz group (ρα

β )
∗ =

ηαλ ηγβ ργ
λ . The plane waves/group elements are represented as G∗(pµ) = eipiρ(xi)eip0ρ(x0). In [1]

we noticed that the non degenerate orbits of this representation are diffeomorphic to the group
manifold. Given a fiducial five-dimensional vector uA, an orbit is obtained by acting upon it obtain
an five-dimensional vector with G∗(pµ) for all choices of pµ :

XA = XA(pµ) = G∗(pµ)
A

B uB . (1.2)
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The XA(pµ) are the parametric representation of a four-dimensional submanifold embedded in a
five-dimensional Minkowski space, which is diffeomorphic to the momentum space (group mani-
fold of AN(3)). Furthermore, XAXA =XA(p)XB(p)ηAB = uAuBηAB with ηAB = diag(+,−,−,−,−)
for all pµ ∈ R4. The XA(p) induce on the orbit a metric

ds2 =−∂XA

∂ pµ

∂XB

∂ pν

ηABdpµ dpν , (1.3)

which riproduce the results in [31] for uA = δ A
4 . In this case the relation X0 +X4 > 0 is verified for

all choices of pµ , and therefore we are actually dealing with half of de Sitter spacetime. A different
choice of the fiducial vector leads to a different momentum spaces associated to κ-Minkowski. In
particular one has three families of inequivalent momentum spaces depending on whether uA is
space,time or light-like [1]. Furthermore, the algebra an3 is also isomorphic to a sub algebra of
so(3,2), which induce the following representation of the x0, xi

ρ ′(x0) =− i
κ

 0 0 1
0 0̂ 0
1 0 0

 , ρ ′(x1) = i
κ

 0 −e1 0
e1 0̂ e1

0 e1 0

 ,

ρ ′(x2) = i
κ

 0 e2 0
e2 0̂ e2

0 −e2 0

 , ρ ′(x3) = i
κ

 0 e3 0
e3 0̂ e3

0 −e3 0

 . (1.4)

Hence the orbit-based construction of the momentum space can be recast in terms of SO(3,2) group
producing three more families [1,30]. In some sense, the momentum space has become fuzzy [32].
In this paper we will derive the symmetries of momentum spaces belonging to the families listed
in [1].

2. Inönü-Wigner contractions and momentum symmetries

We want to study the isometry group of the momentum spaces obtained in [1]. There are three
classes of momentum space each corresponding to the family of nondegenrated orbits (AN3)u built
using a a space-like, light-like or time-like fiducial vector. The symmetries of a momentum space
coincide with the symmetries of the corresponding orbit. Our idea is to obtain the symmetry group
as the Inönü Wigner group contraction [33] of the global symmetry group of the embedding space
with respect to the stabilizing subgroup of the fiducial vector u (little group). We consider the Lie
algebra of generators LAB with the following commutation relation

[LAB,LCD] = gADLBC−gACLBD +gBCLAD−gBDLAC , (2.1)

where gAB = diag(+,−,−,−,λ ), and λ =±1 distinguishes between the de Sitter so(4,1) the anti-
de Sitter so(3,2) Lie algebras [34]. We split the generators LAB as Li j = εi jkJk, L0 j = K j, L4 j = M j,
L04 = B, hence the algebra (2.1) reads

[Ji,J j] = εi jkJk, [Ji,M j] = εi jkMk, [Ji,K j] = εi jkKk, [Ki,K j] =−εi jkJk, [Mi,M j] = λεi jkJk,

[Ki,M j] = δi jB, [Ki,B] = Mi, [Mi,B] = λKi, [Ji,B] = 0.
(2.2)

The group contraction will be cast as follows. Given a fiducial vector uA, we first isolate the
combination of generators L which changes uA from those that leaves it invariant (little group).
Then, we rescale them using a uA-dependent dimensionful parameter in such a way that the algebra
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will change in a singular way. We finalize the contraction blowing up the parameter. All that
remains, will be the Lie algebra generating the symmetry group of the momentum space associated
with uA.

SO(4,1) Space-like fiducial vector: we consider the space-like fiducial vector vA
1 =(0,0,0,0,α).

The little group that stabilizes v is generated by the Ji’s and the Ki’s. On the other hand v is changed
by the Mi’s and B. Then, following the contraction mechanism, we rescale these last two generators
as P0 = B/α, and Pi = Mi/α, where α is the only non-vanishing component of the fiducial vector
v. Sending α → ∞ the algebra (2.2) becomes

[Ji,J j] = εi jkJk, [Ji,Pj] = εi jkPk, [Ji,K j] = εi jkKk, [Ki,K j] =−εi jkJk, [Pi,Pj] = 0,

[Ki,Pj] = δi jP0, [Ki,P0] = Pi, [Mi,P0] = 0, [Ji,P0] = 0.
(2.3)

Not surprisingly we obtain the Poincaré algebra iso(3,1). Indeed, since the orbit of the dS group
acting on the fiducial vector (0,0,0,0,α) gives an half de Sitter hyperboloid oriented along the
temporal axis, it looks like Minkowski space-time, whose isometry group is ISO(3,1), in a neigh-
bourhood of the fiducial vector.

SO(4,1) Light-like fiducial vector: this time we consider the light-like fiducial vector vA
2 =

(β ,0,0,0,β ) is lightlike whose stabilizing subgroup is generated by the Li j (i.e. Ji) and the N+
i :=

Ki +Mi. It is changed by the action of B and N−i := Ki−Mi, thus we rescale those elements of
so(4,1) as Q0 = B/β , and Qi = N−i /β = (Ki−Mi)/β . Then, by sending β → ∞ in (2.2) we get

[Ji,J j] = εi jkJk, [Ji,N+
j ] = εi jkN+

k , [Ji,Q j] = εi jkQk, [N+
i ,N+

j ] = 0, [N+
i ,Q j] =−2δi jQ0,

[Qi,Q j] = 0, [Qi,Q0] = 0, [N+
i ,Q0] = 0, [Ji,Q0] = 0.

(2.4)

The brackets in (2.4) define the Lie algebra carr(3,1) of the Carroll group [35–39], in which Ji and
Qi are interpreted as spatial rotation and translation generators respectively, N+

i plays the role of
Carrollian boost and Q0 is the time translation generator. Indeed, the orbit of a light-like fiducial
vector is just the future-oriented fold of the light cone, and the induced metric has one zero eigen-
value (and the other eigenvalues have all the same sign) [1]. The Carroll group Carr(3,1) can be
defined as the inhomogeneous group associated to those boost which independently preserve the
two metrics ηµν = diag(0,1,1,1) and ηµν = diag(1,0,0,0)1.

SO(4,1) Time-like fiducial vector: the only case left is that of a time-like vector, say vA
3 =

(γ,0,0,0,0). Such a vector is stabilized by the little group of generators Li j (the spatial rotations Ji)
and L4i = Mi while it is changed by the action of L0i = Ki and L04 = B. Repeating the now familiar
procedure, we introduce Ti = Ki/γ , T0 = B/γ, and the algebra so(4,1) and sending γ → ∞ we get

[Ji,J j] = εi jkJk, [Ji,M j] = εi jkMk, [Ji,Tj] = εi jkTk, [Ti,Tj] = 0, [Mi,M j] = εi jkJk,

[Ti,M j] = δi jT0, [Ti,T0] = 0, [Mi,T0] = Ti, [Ji,T0] = 0
(2.5)

The Lie algebra above algebra generates the Euclidean group in four dimensions iso(4) [19], with
Tµ as translation generators and Ji, M j as SO(4) generators. Indeed, the orbit of the dS group
generated by vA

3 is one of the sheets of the two-sheeted hyperboloid aligned along the X0 axis [1].
In fact the hyperboloid looks like the Euclidean plane R4 near it axis.

1The name Carroll is a reference to the author of the famous novel Trough the Looking-glass [37] because the
Carolliann time somehow fits the description of time given to Alice by the Red Queen.
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SO(3,2) Space-like fiducial vector: now, we switch to the AdS group SO(3,1) ( generated by
algebra (2.2) with λ = −1). When discussing the contraction of AdS we will adopt the following
nomenclature

J3 = I12, B = I34, M1 = I41, M2 = I42, K1 = I31, K2 = I32. (2.6)

Consider the little group of the space-like fiducial vector wA
1 = (0,0,0,α,0). Its stabilizer is gener-

ated by L12 = J3, L04 = B, L41 = M1 , L42 = M2, L01 = K1 and L02 = K2. Then, we have to rescale
Ua = Ja/α , U3 = K3/α, U4 = M3/α . Taking the limit α → ∞ in (2.2) we get:

[Iα,β , Iγδ ] = γαδ Iβγ − γαγ Iβδ + γβγ Iαδ − γβδ Iαγ , [Iα,β ,Uγ ] = γαγUβ − γβγUα , [Uα ,Uβ ] = 0, (2.7)

where γαβ = diag(−,−,+,+), and the greek indices range from 1 to 4. The contracted algebra
(2.7) is iso(2,2), describing the isometries of a flat space of signature (2,2). This is a hyperplane
tangent in the fiducial vector to the orbit of wA

1 (a two-sheeted hyperboloid around the axis 3) [1].
SO(3,2) Light-like fiducial vector: we choose wA

2 = (0,0,0,β ,β ) as a fiducial light-like
vector this time . The isotropy subgroup is generated by L01 =, L02, L12, (which close a so(2,1)
subalgebra), and L03 +L04 = K3 +B = N0, L13 +L14 =−J2−M1 = N1 and L23 +L24 = J1−M2 =
N2. The generators that change wA

2 are L03− L04 = K3−B, L13− L14 = −J2 +M1, L23− L24 =
J1 +M2 and L34 = B. Hence, we rescale V0 = (K3−B)/β ,V1 = (M1− J2)/β ,V2 = (J1 +M2)/β

and V3 = B/β , and the (2.2) become

[Vµ ,Vρ ] = 0, [Vµ ,Nρ ] = 0, [Nρ ,Nσ ] = 0, [Lρσ ,V3] = 0, [Lρσ ,Vτ ] = hρτVσ −hστVρ ,

[Lρσ ,Nτ ] = hρτ Nσ −hστ Nρ , [Lρσ ,Lτλ ] = hρλ Lστ −hρτ Lσλ +hστ Lρλ −hσλ Lρτ ,
(2.8)

where ρ,σ ,τ,λ , ... = 0,1,2 and hρσ = diag(−1,1,1). This is the algebra carr(2,2) which it gen-
erates the Carroll group in which one of the space-like axes has changed signature. These are the
isometries of a light-like hyperplane in a flat spacetime of signature (2,2), which the tangent space
at wA

2 of the orbit of the AdS group generated by wA
2 [1].

SO(3,2) Time-like fiducial vector: we consider wA
3 = (γ,0,0,0,0) which is a time-like fidu-

cial vector for the λ = −1 metric. Its stabilizer is generated by Li j (the spatial rotations Ji) and
L4i = Mi. The fiducial vector is change by L0i = Ki and L04 = B instead. Introducing Si = Ki/γ and
S0 = B/γ ,and sending γ → ∞ we get

[Ji,J j] = εi jkJk, [Ji,M j] = εi jkMk, [Ji,S j] = εi jkSk, [Si,S j] = 0, [Mi,M j] =−εi jkJk,

[M j,Si] =−δi jS0, [Si,S0] = 0, [Mi,S0] =−Si, [Ji,S0] = 0 .
(2.9)

This is the Poincaré algebra iso(3,1). Indeed, the orbit associated with wA
3 is a one-sheeted hyper-

boloid, with rotational symmetry in the 0− 4 plane . Near the 0 axis, this looks like Minkowski
space-time.

3. Conclusions

We developed a method to compute the isometry group of the momentum spaces compatible
with κ-Minkowski spacetime. Inspired by the orbit-based classification introduced in [1], the isom-
etry group has been computed as the contraction of SO(4,1) (or SO(3,2)) with respect to the little
group of the fiducial vector whose orbit correspond to the desired momentum space. The case with
iso(3,1) symmetry and the one with iso(2,2) (see Table 1) symmetry are compatible with results
in literature [19, 30]. On the other hand, the 4D-Euclidean case iso(4) as well as the carr(3,1),
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and carr(2,2) are genuinely new. Since duality between the Caroll group and the Galilei group has
both physical and mathematical implication [38, 40], the presence momentum spaces with Carol-
lian symmetry group trills the authors curiosity. In conclusion, we have some new (momentum)
spaces to be explored, whose physical interpretation may give new and unexpected application of
κ−Minkowski space-time.

Fiducial Vector Group Contracted Algera Group Contracted Algera
space-like iso(3,1) iso(2,2)
light-like SO(4,1) carr(3,1) SO(3,2) carr(2,2)
time-like iso(4) iso(3,1)

Table 1: In the first column we report the nature of the fiducial vector. In the next two couples of
column we report the isometry group associated to the momentum spaces in the class selected by
the fiducial vector in the case of an embedding space symmetric under SO(4,1) or SO(3,2).

(a) Orbit of the dS group gener-
ated by a spacelike fiducial vec-
tor.

(b) Orbit of the dS group gener-
ated by a lightlike fiducial vec-
tor.

(c) Orbit of the dS group gener-
ated by a timelike fiducial vec-
tor.

(a) Orbit of the AdS group gen-
erated by a spacelike fiducial
vector.

(b) Orbit of the AdS group gen-
erated by a lightlike fiducial vec-
tor.

(c) Orbit of the AdS group gen-
erated by a timelike fiducial vec-
tor.
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