
P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
9
2

Numerical and analytical studies of a matrix model
with non-pairwise contracted indices

Naoki Sasakura*

Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto
606-8502, Japan
E-mail: sasakura@yukawa.kyoto-u.ac.jp

The canonical tensor model, which is a tensor model in the Hamilton formalism, can be straight-
forwardly quantized and has an exactly solved physical state. The state is expressed by a wave
function with a generalized form of the Airy function. The simplest observable on the state can be
expressed by a matrix model which contains non-pairwise index contractions. This matrix model
has the same form as the one that appears when the replica trick is applied to the spherical p-spin
model for spin glasses, but our case has different ranges of variables and parameters from the
spin glass case. We analyze the matrix model analytically and numerically. We show some evi-
dences for the presence of a continuous phase transition at the location required by a consistency
condition of the canonical tensor model. We also show that there are dimensional transitions of
configurations around the transition region. Implications of the results to the canonical tensor
model are discussed.
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1. Introduction

Quantization of gravity is one of the most challenging problems in theoretical physics. There
have been various proposals to solve the problem. Discretized setups are used by some of them,
including tensor models [1, 2, 3, 4]. In discretized approaches, the main question is whether the
dynamics generate global spacetimes with the continuum description of GR. In the tensor models
in Euclidean forms, however, the produced objects are singular, such as branched polymers [5], or
unnatural fine-tunings of the models are required to generate global spaces [6, 7]. Currently, it is
an open question whether there exist discretized theories with sensible spacetime emergence.

Stimulated by the success of CDT [8], a Lorentzian formulation of the tensor model was
proposed by the current author [9, 10]. Rather than introducing an explicit time direction, the tensor
model was formulated as a first-class constrained system in the Hamilton formalism. Namely,
Hamiltonian is given by

H = NaHa +N[ab]L[ab], (1.1)

where Na and N[ab] are arbitrary multipliers, and Ha and L[ab] are the first-class constraints satis-
fying the following structure of a closed Poisson algebra [9, 10],

{H ,H } ∼L ,

{H ,L } ∼H ,

{L ,L } ∼L .

(1.2)

Here the indices take the values, 1,2, . . . ,N, and the repeated indices are assumed to be summed
over. Intriguingly, this constraint Poisson algebra has the similar form as that of the ADM formal-
ism of GR with the correspondence of Ha and L[ab] to the Hamiltonian and momentum constraints,
respectively. In particular, the similarity includes the variable dependence of the structure function
in the first line of (1.2), which makes the dynamics non-trivial. Under some reasonable assump-
tions such as time-reversal symmetry and locality for the tensor model, the formulation was shown
to be unique [10]. We call the tensor model the canonical tensor model for short, since this is based
on the canonical formalism.

The quantization of the canonical tensor model is straightforward with the canonical quanti-
zation [11]. After quantization, the first class constraint algebra basically keeps the form (1.2) with
the replacement of the Poisson brackets to commutators. The physical state conditions are given
by

Ĥa|Ψ〉= L̂[ab]|Ψ〉= 0, (1.3)

where Ĥa and L̂[ab] are the quantized constraints. These conditions give a system of partial differ-
ential equations with non-linear coefficients for wave functions. Surprisingly, these equations have
an exact solution [12],

Ψ(P) =

(∫
RN

N

∏
a=1

dφa exp(I Pabcφaφbφc)Ai(κ φaφa)

) λH
2

, (1.4)
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where λH = (N + 2)(N + 3)/2, P designates a real symmetric tensor Pabc (a,b,c = 1,2, . . . ,N), I
is the imaginary unit (I2 = −1), and Ai(·) is the Airy Ai function. κ is a real parameter, which
has the opposite sign to the cosmological constant, which has been argued by comparing the N = 1
case with the mini-superspace approximation of GR [13]. An important thing is that the relation
λH = (N+2)(N+3)/2 is determined by the hermiticity of the quantized constraint Ĥa, and should
therefore have this fixed relation with N.

The properties of the wave function (1.4) are largely unknown. In particular it is unknown
whether this has ridges which can be understood as spacetime trajectories, as in the ideal sit-
uation shown in the left figure of Figure 1. On the other hand, the wave function is known
to have peaks (or ridges) on the locations where Pabc satisfies Lie group symmetries (namely,
Pabc = ha′

a hb′
b hc′

c Pa′b′c′ (h ∈ H) with a Lie group representation H), as shown for the N = 3 case
in the right figure of Figure 1 [14, 15]. A striking fact is that the Lie-groups associated to such
ridges of the wave function (1.4) have Lorentz signatures. Comparing with the left figure, the sim-
ilarity encourages the study of the canonical tensor model as a model for emergent spacetimes. It
would also be noteworthy that Lie group symmetries, such as Lorentz, de Sitter, and gauge, are
ubiquitous in the universe, as on the peaks (or ridges) of the wave function.

Figure 1: Left: An ideal wave function which contains a ridge representing a spacetime. Right: The wave
function of the canonical tensor model with N = 3.

2. The matrix model

To understand more of the properties of the wave function, we take a different strategy in this
section. The simplest observable would be

〈Ψ|e−αP̂abcP̂abc |Ψ〉, (2.1)

where α is positive real. For example, one of the interests in this wave function is the limit α→+0.
If the wave function contains a ridge which has a spacetime interpretation with an infinite extension
of a time direction, the norm will linearly diverge in this time direction in the α → +0 limit.
Therefore the behavior of (2.1) in the limit is related to whether the tensor model wave function
contains an infinite extension of time direction or not.

Currently, it is not easy to study (2.1). Therefore our strategy is to carry out some simplifi-
cations to the wave function (1.4). When κ > 0, which corresponds to the negative cosmological
constant, the Airy Ai function is a fast decaying function of φaφa. Therefore, as an initial study, it
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would be interesting to simplify the Airy function to e−kφaφa with positive k, and study the proper-
ties of (2.1). With this simplification we obtain

〈Ψsimple|e−αP̂abcP̂abc |Ψsimple〉= N α
−#P/2ZN,λH ((4α)−1,k), (2.2)

where N is an unimportant normalization factor, #P = N(N + 1)(N + 2)/6, namely, the number
of independent components of Pabc, and ZN,R(λ ,k) is the partition function of the matrix model
defined by [16]

ZN,R(λ ,k) =
∫ R

∏
i=1

N

∏
a=1

dφ
i
a e−λ ∑

R
i, j=1(φ

i
aφ

j
a )

3−k ∑
R
i=1 φ i

aφ i
a . (2.3)

Here the repeated lower indices are assumed to be summed over, but the summation over the upper
indices are written explicitly. This is because the upper indices are not always contracted pairwise:
the first term of the exponent contains triple contractions of the upper indices. We also assume
λ ,k > 0 for the obvious convergence of the integration.

It is particularly important to note that, while the matrix model (2.3) itself has both N and R
as free parameters, they are restricted by R = λH = (N + 2)(N + 3)/2, if we consider the relation
(2.2) to the tensor model. Surprisingly, we will see later that this relation agrees with the location
of the continuous phase transition (or crossover) point in the leading order of N.

Lastly, let us comment on the relation between our matrix model and the one that appears in
the replica trick applied to the the spherical p-spin model (p = 3) for spin glasses [17, 18]. The
partition function of the spherical p-spin model for p = 3 is given by

Zp-spin =
∫

φaφa=1
dφ e−Pabcφaφbφc (2.4)

with a random coupling Pabc to simulate spin glasses. Simulating the random coupling by Gaussian
distribution, e−αP2

, and applying the replica trick, one obtains∫
dPe−αP2

(Zp-spin)
R =

∫
φ i

aφ i
a=1

dφ e
1

4α ∑
R
i, j=1(φ

i
aφ

j
a )

3
. (2.5)

This is very similar to our matrix model (2.3), but there are a few major differences. One is that
the coupling parameter has the opposite sign compared to our case. This means that the dominant
configurations are largely different between the spin glass and our cases. Another difference is that,
in the replica trick, the replica number R is finally taken to the limit R→ 0, while we are rather
interested in the case of the tensor model R = λH = (N + 2)(N + 3)/2. In particular, this means
that, in the thermodynamic limit N→ ∞, R should also be taken infinite for the correspondence to
the tensor model.

3. Perturbative computations

A perturbative computation of the matrix model (2.3) was carried out in [16]. Regarding the
exponent of (2.3) as the action of the matrix model, Feynman rules can be written down for the
perturbative computation in λ . The most dominant diagrams in large R for each order in λ are the
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necklace diagrams depicted in Figure 2, where the examples of the order n = 3 are given. Summing
over all n, it has been obtained that

ZN,R(λ ,k) = N ′
∫

dr rNR−1 fN,R(λ r6)e−kr2
, (3.1)

where

fN,R(t) =
(

1+
12t

N3R2

)−N(N−1)(N+4)
12

(
1+

6(N +4)t
N3R2

)−N
2

. (3.2)

Figure 2: The necklace diagrams for the third order.

A generalization of the perturbative computation above was performed in [19] by employing a
slightly different strategy. In the generalization, the coupling term in the exponent was generalized
to

R

∑
i, j=1

Λi j(φ
i
aφ

j
a )

3 (3.3)

with a symmetric matrix Λ. In this case, the above fN,R(t) is generalized to

fN,R(t) = ∏
eΛ

hN,R(eΛt), (3.4)

where the product is over the eigenvalues of the matrix Λ with the degeneracies taken into account,
and

hN,R(t) = (1+12γ3t)−
N(N+4)(N−1)

12 (1+6(N +4)γ3t)−
N
2 (3.5)

with

γ3 =
Γ
(NR

2

)
8Γ
(NR

2 +3
) . (3.6)

This indeed agrees with (3.2) for the special case Λi j = λ in the leading order of R, since the
eigenvalues of Λ are one Rλ and R− 1 zeros. This generalization makes it possible to compute
the expectation values of the products of (φ i

aφ
j

a )3 by taking the derivatives of the partition function
with respect to Λi j.
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4. Monte Carlo simulations

The Monte Carlo simulations were performed by the Metropolis update method in [19]. We
observed a phase transition or a crossover around R ∼ N2/2. This location curiously agrees with
R = λH = (N +2)(N +3)/2 in the leading order of N, which is required by the consistency of the
tensor model, as explained in Section 2.

Since the overall coefficient of the exponent of (2.3) can be absorbed by the rescaling of φ i
a,

we set λ = 1 in the simulations, leaving N,R,k as variables.

4.1 Expectation values of observables

We show the results of the expectation values, 〈U〉, 〈Ud〉, and 〈r2〉, in Figure 3, where

U =
R

∑
i, j=1

(φ i
aφ

j
a )

3, Ud =
R

∑
i=1

(φ i
aφ

i
a)

3, r2 =
R

∑
i=1

φ
i
aφ

i
a. (4.1)

There seems to exists a continuous phase transition point or a cross over near R ∼ N2/2. The

Figure 3: Expectation values of observables. The dots with error bars are the Monte Carlo results. The solid
lines are the perturbative analytical results.

simplest characterization of the transition is that φ i
a take small values for R . N2/2, while φ i

a

take large values for R & N2/2. To answer the question whether this is a phase transition in the
thermodynamic limit N → ∞ turned out to be very difficult. In the region where R & N2/2 and
k is small, there are slowdowns of Monte Carlo updates: If we took step sizes so that acceptance
rates were reasonable, the configuration updates were too slow for us to see the thermodynamic
equilibriums within our runtimes. This problem restricted us to perform the simulations in the
range N . 10 and k & 0.05, which were not enough to see a sharp transition: The transition may
be a phase transition or just a crossover.

Another issue is that the analytical results do not agree with the Monte Carlo results in the
vicinity of the transition region R∼ N2/2. This implies that some important contributions have not
been taken into account in the perturbative analytic computations.

4.2 Dimensional transition

To see what occurs at the transition region in more detail, we studied the characteristics of the
configurations. The N-dimensional vector φ i

a for each i can be regarded as representing a point in
an N-dimensional vector space. Then the collection of R points, φ i

a (i = 1,2, . . . ,R), represents a
point cloud in the N-dimensional space. Rather than considering the point cloud itself, we project
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the points onto the unit sphere SN−1 by φ̃ i
a = φ i

a/
√

φ i
aφ i

a. If a point cloud is a d + 1 dimensional
ball-like object in the N-dimensional space, the projection produces a point cloud with the topology
of Sd on the unit SN−1. Therefore the topology of the projected point cloud on SN−1 can be used to
determine the dimension of the point cloud of φ i

a (i = 1,2, . . . ,R). One can know the topology in
various manners. Below we will study the topologies of the projected point clouds in three different
manners, where the datas come from the actual simulations.

First, we use Principal Component Analysis (PCA). This is to extract some major directions in
which a point cloud has extensions. If d ≤ 2, one can project Sd into a three-dimensional space as
shown in Figure 4. There exist topology changes from lower to higher dimensional spheres, when

Figure 4: The density plots of the projected point clouds, which were projected further to a three-
dimensional space by PCA. The datas are from the simulations of N = 4, k = 0.01 and the values of R
shown in the figure.

R is increased in the transition region.
Next we will see the topology by the angular distribution among the vectors, φ̃ i

a and φ̃
j

a (i 6= j).
It is easy to understand that, if φ̃ i

a (i = 1,2, . . . ,R) form a point cloud of the form of a unit Sd , the
angular distribution will be

N sind−1(θ)dθ (4.2)

with an unimportant normalization factor N . We fit the data with the distribution (4.2) to extract
the value of d. The results are shown in Figure 5. There is an increase of the dimensions with the
increase of R.

The last way is to use the persistent homology [20]. This is a method used in the topolog-
ical data analysis, that extracts homology structure of datas which are coarse-grained by a scale
parameter. If a point cloud forms Sd , a d-dimensional persistent homology group element will be
detected. The result of the analysis is shown in Figure 6, where PHi designates the i-dimensional
persistent homology group. As can be seen, higher dimensional homology group elements appear
more often as R is increased.

5. Summary and future prospects

We have studied a matrix model which represents the simplest observable for an exactly solved
physical state of the canonical tensor model. This matrix model has the unusual property that it
contains non-pairwise index contractions, and cannot be exactly solved by the well-known methods
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Figure 5: The angular distribution among φ i
a and φ

j
a (i 6= j) for various R with N = 10, k = 0.01.

Figure 6: Persistent diagrams for various R with N = 10, k = 0.01, where persistent homology group
elements are represented by dots. The scale parameters, ubirth and udeath, designate the births and deaths of
the elements. Long-life (persistent) elements are the dots distant from the diagonal lines.

applied to the usual matrix models. This matrix model has the similar form as the one that appears
in the replica trick of the spherical p-spin model (p = 3) for spin glasses. However, our case
has different ranges of parameters and variables from the spin glass case, and new analysis is
needed. We have performed some analytical and numerical computations for the matrix model.
The most striking result is the presence of the continuous phase transition point or a crossover at
the location which is required by the consistency of the canonical tensor model. This means that
the canonical tensor model exists exactly on or in the vicinity of the continuous phase transition
point. This means that the canonical tensor model automatically exists at the location where its
continuum limit could be taken, as continuum theories are often obtained by taking continuum

7



P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
9
2

A matrix model with non-pairwise contracted indices Naoki Sasakura

limits around continuous phase transition points. The non-trivial behavior of the dimensions of
the configurations, represented by point clouds, would also be encouraging for the possibility of
spacetime emergence in the canonical tensor model.

Further improvement of the results after the conference has been presented in our recent paper
[21].
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