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1. Introduction

There has long been an expectation that quantum mechanics has its origin in rand@#ess [
There also have been attempts to explain the observed values of physical constants by making th
constants random variablé3 [l 5 [G). A natural question we may then have is whether a quantum
theory of gravity can be formulated based on randomness. In order for such framework to be
meaningful, there must be a mechanism forgheergence of spacetime geometry from randomness

In [[4, we defined a geometry for an arbitrary Markov stochastic process such that the distance
between configurations quantifies the difficulty of transition between them. In this article, we
discuss that the above mechanism can be realized by considering a stochastic process of matrice
where we regard the eigenvalues as coordinates of a spacetime. We investigate the distance fc
the effective stochastic process of one-eigenvalue, and argue that this distance can be interprete
in noncritical string theory as probing a classical geometry with a D-instanton. We further give a
preliminary result that, when we apply our formalism to a stochastic procé$&Nof matrix with
treating the 't Hooft coupling as another dynamical variable, a Euclidean 4d@metry emerges
in the extended configuration space in the lakyémit, where the horizon corresponds to the
Gross-Witten-Wadia phase transition point.

2. Distance between configurations in a Markov stochastic process
In this section, we summarize the results obtaine@jmapd [g].

2.1 Definition of distance

Let .# = {x} be a configuration space afx) an action. We consider a Markov chain for
probability distributiongn(x),

Pa(X) —» Prsa() = [ dyP(XY) Pa(y); @)

and design the transition matiXx|y) = (x|P|y) such thaP,(x]y) = (x|P"]y) converges uniquely in
the limitn — oo to the equilibrium distributiorpeq(x) = (1/2) eS¥ (Z = [ dxe S¥). We further
assume tha(x|y) satisfies the detailed balance condition

P(X]y) Peq(y) = P(Y|X) Peq(X), (2.2)

and that all the eigenvalues Bfare positive. These assumptions are satisfied for Langevin algo-
rithms, and if® has negative eigenvalues, we then instead conBfdas the fundamental transition
matrix, which satisfies the detailed balance condition of the same form.

Suppose that the system is in equilibrium wiify(x), and consider the set of ailistep random
paths in.#. We introduce theonnectivity f(X,y) between configurationsandy for fixed step
numbern as the ratio of “the number ai-step paths frony to x” to “the number of alln-step
paths” [[]. This can be expressed as the product of the probability toyfincequilibrium and the
probability to obtainx from y atn steps:

fa(X,¥) = Pa(Xly) Peq(y)- (2.3)
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The detailed balance condition means thdk,y) is a symmetric function ot andy. We further
introduce thenormalized connectivitytx,y) [7] by

Fa(X,y) = fa(X,y) _ [R(xly) Pa(ylx) 2.0

fu (%, X) Fu(Y,Y) P(XX) Pa(yly)”

Thedistance d(x,y) between x and y for fixed n stefi$ is then defined by the relatidf(x,y) =
e (/2R je.

_ Pa(X]y) Pa(Y[X)
dn(X,y) = \/In W (2.5)

One can show that this satisfies all the axioms of distance but the triangle ineddlénd that
the triangle inequality does hold for the coarse-grained configuration space that is introduced below
[B]. Furthermore, if the Markov chain generates only local movegznthe distance is universal
in the sense that the difference of distances for two different Markov chains with the same.action
can be absorbed into a rescaling of step nunmber

For example, the Gaussian actifx) = (8/2) TN, x? for anN-dimensional variable = (x;)
(using as a Markov chain the Langevin algorithm with fictitious time increraggtves a flat and
translationally invariant geometr{]

dh(X,y) = \/ 23|thBn£ IX—yl. (2.6)

As another example, for the one-dimensional double-well a&{gn= (3/2) (x> — 1)2 with large
B, the distance between two minima= +1 can be estimated to 162(3) [[7].

2.2 Coarse-grained configuration space

For a Markov chain that generates local moves, the distance takes significant values only for
transitions between configurations around different modes, and thus, configurations around the
same mode can be effectively treated as a single point when we discuss about the global geometr
of .. This leads us to the idea of tkearse-grained configuration spacﬂ(_[lzn. For example, for
the double-well action above, the original configuration spac#is- R, and the coarse-grained
configuration space consists of two minima, = {+1, —1}. For anN-dimensional periodic action

N
S B) = B 3 (1-cosx) (B> 1) (27)

the original configuration space .i# = RN, and the coarse-grained configuration space islan
dimensional lattice consisting of local minimaz = {x = (2rk) |k € Z (i = 1,...,N)} ~ ZN.

When an actior§(x) has local minima that are scattered in the configuration space in a complicated
way, the gradient flow. = —3,S(x;) [0 @] can be used for a systematic construction of the
coarse-grained configuration space.
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2.3 Geometry for a tempered stochastic process

Suppose that we have a configuration space with a highly multimodal equilibrium distribution,
and let us apply the simulated tempering algorit@t¢ the system. Namely, we treat a parameter
B existing in the actior§(x; 8) (say, the overall coefficient in the action as [[ad)) as another
dynamical variable, and extend the configuration spateo .# x o/ = {X = (x,3)}. Here
of = {B} is a discrete set of values ¢ that includes such values for which the distribution
0 e SXP) is far less multimodal in the-direction. We introduce a new Markov chain to the
extended configuration spac# x <7 such that global equilibrium is realized with the probability
distribution Peg(X) = Peq(x, 8) O €~S%B). This algorithm prompts transitions between different
modes at the original value @, because they now can communicate with each other by passing
through configurations at sugtis that give less multimodality (see F[g).

S(x; B)

B

Figure 1: A random path in the extended configuration spagex </. [% is the original value of3, at
which the equilibrium distribution is highly multimodal in thxedirection.

We can also consider the coarse-graining of the extended configuration _spa@, itins[
shown for the actionZ7) that the coarse-grained, extended configuration spéce <7 has a
geometry of Euclidean Adg& 1 of the following form for larges:

N d 2
ds? = d2(X, X +dX) = const 3¢ _deﬁ-constF, (2.8)
i=

which can be transformed to a standard fod#, 0 p? TN, dx? 4+ dp?/p? O (3N, d¥ 4 d2) /2,
by settingB = constp?/9 = constz /9,

We comment that the discretization of must be done so that configurations can move
smoothly in theB-direction. A simple, geometrical analysis based on the distance shows that
an exponential stepping is optimal for lar@el8, 17, and this result was used in the tempered

Lefschetz thimble methodB, [14 [15 [1g], that is a method towards solving the numerical sign
problem.

3. Geometry for a stochastic process of matrices

3.1 U(N) matrix model

The appearance of asymptotic AgS metric may not be so much interesting as a model of
gravity, because in quantum field theories; (X;) corresponds to a configuration of field variables
(such as a configuration of link variables on the lattice for the lattice gauge theory), and thus
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the degrees of freedonl, is infinite in the thermodynamic limit. It is also hard to regard the
configuration space as directly related to a spacetime.

However, things become different if we note tHaff is a one-body part of the (N) matrix
model,

S(U;B) =PBNRetr(1-U)="—tr(2—U —U"), (3.1)

with U set to a diagonal ford = diag|ixj] (j =1,...,N), and if we recall that the eigenvalue can
be regarded as a spacetime coordinate (see,[E7d)., To state this more precisely, we first rewrite
the partition function as the integration over eigenvalues:

7= /dUe SUiB) D/ |‘|27T Xj)e—BN sha(1-cosx) (3.2)

<]

BN
2

The Faddeev-Popov determingit. ; Sir? (x; — Xj)/2 gives arepulsive two-body potential between
eigenvalues. Then, by introducing the collective coordingteough

N
= % Zép(xi —Uu) (dp(x): periodic delta function with periodr®), (3.3)
i=

we now can regard as a coordinate of a covering space with a periomth2. 7 = {u| —mMm < u <
m}.

It is known that the matrix model has a third-order phase transition in the Migeit at the
Gross-Witten-Wadia poine = 1 [18,[19], where the functional form of the eigenvalue distribution

p(u) = limy_w(p(u)) changes as follows = 2arcsir{1/\/B)):

° 1
B> o) = { ?Tcos2 \/sit = —Sinzg (uely) (3.4)

0 (uely)

e B p(u) = %T(lJchosu) (Vu), (3.5)

wherel; = {u| — % < [u] < %} andly = {u] — < [u] < —xcor+ X < [u] < 11} with [u] the
projected value ofi to the fundamental regior-11, 71).

For a finite but largeN, one-eigenvalue transitions yield an instanton effea&¥") in the
low-temperature phasg (> 1) [20] (see, e.q.,[Z1, 27 for nonperturbative effects of the Gross-
Witten-Wadia model). One can easily show that the one-eigenvalue feels the effective potential
Sert(U; B) = Nv(u; ) +O(InN) with

(U € |1)
v(u) = S|nu/2 sirfu/2 sinu/2 sirfu,/2 (3.6)
S'”XC/ZI\/E smxc/z i sinzxc/2_1> (U€l2).

The vanishing of potential in the regidn] < x; (we have set a possible additive constant to zero)
can be understood as a balance between the one-body potential and the repulsive potential fron
other eigenvalues that are condensed with the distribuiE@h (Note that there is no such instanton
effect for the high temperature phase, so ti{ay vanishes fo3 < 1.
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3.2 Geometry for a stochastic process of one-eigenvalue and a string theoretical
interpretation

Let us consider the stochastic process of one-eigenvalith respect to the effective action
S(u; B) = Nv(u; B) + O(InN) for B > 1. The distance measures the difficulty of one-eigenvalue
transitions in the background where other eigenvalues are condensed thl lsoggions[B.4). We
thus can interpret the distance as “measuring the background geometry of condensed eigenvalue
by using the one-eigenvalue as a probe.” On the other hand, in noncritical string theory, one-
eigenvalue corresponds to a D-instant@f [(see alsolZ4, 25 28 27 28 29)). Thus, the above
can be rephrased as “measuring the background geometry by using a D-instanton as a probe.”

3.3 Emergence of a quantum blackhole

We now implement the simulated tempering by treating the inverse 't Hooft coufliag a
random variable. The coarse-grained, extended configuration sgace? = {X=(u,B)} then
becomes a two-dimensional lattice. Recall that we have set a periodic boundary condition-for the
u-direction with period Zm.

The geometry of# x < in the low temperature phasg ¢ 1) should be as follows. First
we recall that the effective potential disappeargat 1 in the largeN limit, which means that
the distance betweegi®, 3) and(u, 3) should become vanishingly small @t= 1 for arbitraryu.

Since we set a periodic boundary condition in thdirection, we thus find that thg!-cycle in
the u-direction vanishes g8 = 1 in the largeN limit (see the left panel of Figd). On the other

P
N
=0 r
T
geqdesjc
1 horlzoni <=1
—7m mﬁ u horizon

Figure 2: (Left) Geometry of # x <7 in the largeN limit. u has a period m, and theSt-cycle vanishes at
the horizonB = 1. (Right) The corresponding geometry in continuunias a period &, and the horizon is
atp =1.

hand, the effective actioB(u; 8) = N v(u; 8) +O(InN) has many local minima fg8 > 1, which
means that the geometry oF x </ must be asymptotically AdSor large 3. Combining these
two observations, we expect that the full geometrym_fx o/ for B > 1is given by a Euclidean
AdS; space with a horizon at the Gross-Witten-Wadia pgnt; 1. We choose a candidate metric
in continuum of the form

dp?

p2 -1l

ds? = /2| (p?>—1)d12 + (3.7)
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which is defined only for the outside of the horizgm> 1 (see the right panel of Fi§f). One
can easily check that the metr[B.]) satisfies the equatior®,, = Agyy with A = —1 and has
no conical singularity at the horizom = 1 whent has a period & Furthermore, the geodesic
distancd (1, p) between two point§0, p) and(t, p) can be analytically calculated to be

I(1,p) = 2£arccosr‘/co§;+pzsin2; (3.8)

In the following discussions, we will set an ansatz that the two coordinate sy&tefisand(t, p)
are related to each other with a simple scaling:

u=mr, p=pc+a(B-p)¥% (3.9)

3.4 Numerical confirmation

We now numerically confirm that the two geometries in Blgwre the same under the relation
(39, by comparing “the numerically obtained distanckéX,Y) betweenX = (0,8) andY =
(u, B)” with “the analytic values of distancé(t,p), between(0,p) and(t,p)” for various (u, 3)
withu=u; =2mj (j=1,...,25 andf = B =5x 5% (a=0,1,...,5).

With N = 20,n =200 andn= 50, we determine the parametéfsﬁc, a, Pe, ) by minimizing

d3((0, Ba), (Uj, Ba)) — 12(T(uj), p(Ba)) 12
X —ZZ[ 5d2(J(O Ba), (UjaBa)J) ]

: (3.10)

where[6d?(X,Y)]? is a sample variance in the estimationd3{X,Y). The obtained results are
shown in Fig[3@for the optimizing values,

¢=0.10, B=0.33, a = 3.0, p. =0.93, q=11 (3.11)

with /x2/DOF = /x2/(25x 6—5) = 1.6, from which we confirm that the geometry.of x .o/
is well given by the metrid3.7) through the relatiorid9).

We comment that, for the optimizing paramet@sl{), the corresponding value ¢ to the
horizonp = 1 is given by = 0.83. We expect that the discrepancy from the critical vflue 1
can be understood as a finiké correction (or it may imply that the relatio.8) needs to be
modified) BJ.

4. Conclusion and outlook

In this article, we applied the distance between configurati@hd), (o a Markov process of
matrices. By identifying the eigenvalues with coordinates of a spacetime, this realizes a mechanism
for theemergence of spacetime geometry from randomrfesan example, we showed that there
emerges a Euclidean AdS geometry with a horizon from a tempered stochastic procgdé) of
matrix.

There are left many things we need to study in a more elaborate way. First of all, the fitting
of the geometry with metrid37) is based on the assumptid®.g. It should be nice if we can
analytically calculate the distandg(X,Y) by using the tempered Langevin algorithm for the one-
eigenvalue effective actiod®(u; 8). It should also be interesting to understand the results obtained
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Figure 3: Numerically obtained squared distanc¢X,Y). The solid lines represent the squared geodesic
distancesl?(t, p), for the optimizing parameters (3.11).

here in the context of AAS/CFT correspondence, especially with a relation to the SYK model
[B1 B3 and the wormholes.

It must be important to generalize the present results to higher dimensions. We expect that an
AdSy. 1 blackhole will emerge from a tempered stochastic process ofitienensional twisted
Eguchi-Kawai mode[3, where the action is given b§U,; ) = B Retr(1—z,,U,U,UU)) for
Uy € U(N) ( =1,...,d). The spacetime coordinates= (x,) € RY can be identified with the
fluctuating modes corresponding 1) transformationsJ,, — exu Uy. For a symmetric twist,
thisU (1)4 symmetry is actually broken at largeif N is taken to be sufficiently largB]. In fact,
as was also first found if8f], theU (1)¢ symmetry is restored step by step (the number of restored
directions increases one by onefaslecreases). Since in our construction the spacetime can be
extended only in thdrokendirections and the&'-cycles vanish for the restored directions, we
expect that an Ad§ 1 blackhole with a single horizon is obtained for the regibr B, wherefy
corresponds to the coupling at whiclu@l) symmetry is restored for the first time when reducing
B from a sufficiently large value.

As another direction of future project, it should be important to investigate whether we can
find a stochastic process that gives de Sitter space. If such a process exists, then this should give
new mechanism toreate an inflationary universe from randomness

A study along these lines is now in progress and will be reported elsewhere.
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