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1. Introduction

In the present work, we address the question of tachyonic instabilities at the quantum level in
type I string orbifold models showing anN = 2→N = 0 spontaneous breaking of supersymmetry
in four dimensions [1]. This is done by developing a global geometric picture of the potential,
first described in [2, 3] in the case of N = 4→ N = 0 models. The general route of breaking
supersymmetry at the classical level in flat space, and analyzing the induced effective potential,
was advocated in Refs [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Moreover, the question of stability
was addressed in the heterotic string framework in [6, 7, 15, 16, 17, 18, 19]. The supersymmetry
breaking is implemented by a string version of the Scherk-Schwarz mechanism [20], developed in
the open string context in Refs [21, 22, 23, 24, 25]. If the internal space involved in the mechanism
is a circle of radius R5, the supersymmetry breaking scale M defined as the gravitini mass is

M =
Ms

2R5
, (1.1)

where Ms is the string scale. When the radius is sufficiently large, the dominant contribution to
the potential at one loop is determined by the massless states and their Kaluza-Klein (KK) towers
along the Scherk-Schwarz direction. More precisely, if no mass scale between 0 and M is present
in the model, the one-loop effective potential around a critical background reads in d dimensions
[2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19]

V ' (nF−nB)ξdMd , (1.2)

up to exponentially small terms. In this expression, nF and nB count the numbers of massless
fermionic and bosonic degrees of freedom, while ξd is a positive dressing arising from the KK
towers. Moreover, any potential tree-level instability occurring when M is of the order of Ms [26,
27], which are related to the Hagedorn transition, are avoided.

From the above equation, we see that backgrounds which have more massless fermions than
bosons yield a positive potential. However, the Scherck-Schwarz mechanism implemented alone
provides a mass shift to the fermions of the theory and consequently leads generically to a neg-
ative vacuum energy. Uplifting the potential thus requires additional ingredients. For instance,
the introduction of open string Wilson lines (WL’s) allows to increase the value of the potential
by counterbalancing the Scherck-Schwarz shift, in order to keep fermions massless and to induce
masses for bosons [2]. In this paper, we explicitly show the existence of models that have an ex-
ponentially small potential at one loop, i.e. with nF−nB = 0, as such models could constitute the
groundwork needed to generate a small cosmological constant. The idea is that an exponentially
suppressed one-loop potential may conspire with higher-loops effects to stabilise M and the dilaton,
and eventually yield a cosmological term smaller than in generic models.

The question of the sign or vanishing of the dominant contribution (1.2) of the potential must
be supplemented by the inspection of the stability of the background with respect to the various
WL’s and other moduli. The stability of the WL’s is dictated by the signs of the second-order
terms in the Taylor expansion of the potential at a given background. Non-negativity of all squared
masses is required to obtain (marginally) stable configurations. The WL masses at one loop are
given by the difference between the Dynkin indices of the representations in which the massless
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bosons are organized and the Dynkin indices of the massless fermionic representations [6, 7, 19].
Thus, non-negativity of the squared masses requires the contributions of the massless bosons to
dominate those of the massless fermions, while for the potential to be positive, nF should be greater
than nB. This explains why finding stable vacua with a positive (in which case M undergoes a
runaway) or exponentially suppressed potential is not a trivial task.

In Sect. 2, we detail the construction of our N = 2→ N = 0 orbifold setup in type I string,
starting from the original supersymmetric Bianchi-Sagnotti-Gimon-Polchinski (BSGP) model [28,
29, 30] compactified down to four dimensions and taking into account marginal deformations.
Then, the supersymmetry breaking is implemented with the Scherk-Schwarz mechanism in a di-
rection orthogonal to the orbifold action. In Sect. 3, we compute the mass correction at one loop
of the WL’s, and discuss the (marginal) stability of the closed string moduli. Finally, in Sect. 4,
we analyze the stability of various models and give examples of tachyon free configurations at one
loop showing an exponentially small potential, or a positive potential with runaway behavior of M.
Further details beyond the results presented here can be found in [1].

2. N === 222→→→N === 000 open string model

2.1 Construction of the model

The starting point is the supersymmetric Bianchi-Sagnotti-Gimon-Polchinski (BSGP) model
[28, 29, 30]. It consists in the orientifold projection of the type IIB superstring compactified on
T 4/Z2. The Z2 generator g acts as (X6,X7,X8,X9)→ −(X6,X7,X8,X9) on the coordinates of
T 4. In this model, the Ramond-Ramond (RR) tadpole cancellation imposes the presence of 32 D9-
branes and 32 D5-branes orthogonal to T 4. They cancel the charges of the O9-plane and O5-planes
that are respectively the loci of fixed points of the orientifold generator Ω and of the combination
Ωg. We further compactify down to four dimensions by introducing a torus T 2, which leads to the
background

R1,3×T 2× T 4

Z2
. (2.1)

T 2 is assumed to wrap directions 4 and 5. The metric of both tori is denoted GIJ , I ,J = 4, . . .9,
and we define two sets of non-calligraphic indices to refer to the T 2 directions only, or to the T 4

ones only, I′ = 4,5 and I = 6, . . . ,9.
Consistency conditions require the algebra of Chan-Patton factors to correspond to unitary

or symplectic gauge groups instead of orthogonal ones [28, 29]. The original model showing a
U(16)×U(16) gauge group and N = 2 supersymmetry in four dimensions can be generalized by
introducing all sorts of marginal deformations. First, arbitrary positions of the D5-branes along
T 4/Z2 can be turned on. Second, WL’s along T 2 can be introduced for the gauge group associ-
ated with the D5-branes, and eventually Wilson lines along all of the six internal directions can
be switched on for the gauge group associated with the D9-branes. Moduli in the Neuman (N)-
Dirichlet (D) sector may also exist, and will be analysed in a subsequent work [31]. In the closed
string sector, beside the internal metric GIJ and the dilaton in the Neuveu-Schwarz-Neuveu-
Schwarz (NS-NS) sector, there are moduli in the Ramond-Ramond (RR) sector associated with
the two-form CIJ . In the twisted sector, there are also 16 quaternionic moduli localized at each of
the 16 fixed points of T 4/Z2.
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At generic brane positions or open string WL’s, the original gauge group is spontaneously
broken. Because of the orbifold and orientifold actions, the D5-branes can only move by packets
of four along T 4/Z2. If 2n branes are at a fixed point, this creates a gauge factor U(n) that can break
into U(n−2k)×USp(2k) if 2k branes move away from the fixed point together with their 2k mirror
branes with opposite coordinates in T 4. This implies the moduli space to be split into different
disconnected components corresponding to different numbers of branes with rigid positions in
T 4/Z2. Indeed, when there are 2n′+2 branes at a fixed point, two of them cannot move in T 4/Z2.
There are therefore a maximum of 8 independent positions in T 4/Z2. The WL’s along T 2 of the
gauge group generated by the D5-branes can also be given a geometric interpretation. This is done
by T-dualizing the torus T 2 into T̃ 2, which implies the WL’s to become positions. Overall, the D5-
branes become D3-branes orthogonal to all internal directions. The coordinates of T̃ 2 are denoted
X̃4 and X̃5. Along T 4, the orbifold identifies points that are mirrors to each other, while along T̃ 2,
the orientifold also creates a mirror setup [32] (we then write T̃ 2/I45, where I45 is the inversion
(X̃4, X̃5)→−(X̃4, X̃5)), implying the D3-branes to move by packets of two. There are therefore
16 independent positions along T̃ 2. In this T-dual picture, all the internal space can be represented
as a six-dimensional "box" T̃ 2/I45×T 4/Z2, with an O3-plane at each of the 64 fixed points, and
along which D3-branes can move, as depicted in Fig. 1a.

On the other hand, in order to convert the WL’s associated with the D9-branes into positions,
we need to T-dualize all six internal directions. Denoting T̃ 4 the torus dual to T 4, the D9-branes
are converted into D3-branes orthogonal to all internal directions X̃4, . . . , X̃9, and there are 64 O3-
planes distributed on the 64 fixed points of T̃ 2/I45× T̃ 4/Z2. This is shown schematically in Fig. 1b.
Notice that the descriptions in which the deformations of the D9-brane and D5-brane sectors are
geometrical are distinct. However, for the sake of simplicity, we will represent things on the same
picture (see Fig. 1c). Even if it is abusive, this turns out to be very useful to understand and manip-
ulate various models. For this reason, we will talk about brane positions or WL’s interchangeably.
It is also understood that all positions refer to the appropriate T-dual descriptions. In fact, before
the orbifold action is implemented, the Wilson line matrices associated with the D9-branes live in
the Cartan subgroup of SO(32),

WD9
I = diag

(
e2iπaIα ,α = 1, . . . ,32

)
for I = 4, . . . ,9

= diag
(

e2iπaI1 ,e−2iπaI1 ,e2iπaI2 ,e−2iπaI2 , . . . ,e2iπaI16 ,e−2iπaI16

)
.

(2.2)

This parametrisation remains valid in the orbifold model for the matricesWD9
I′ , I

′ = 4,5, associated
with T 2. However, the number of moduli fields associated with the T 4/Z2 directions I = 6,7,8,9
is reduced, and takes at most the following form,

WD9
I′ = diag

(
e2iπaI′

1 ,e−2iπaI′
1 ,e2iπaI′

2 ,e−2iπaI′
2 , . . . ,e2iπaI′

16 ,e−2iπaI′
16

)
,

WD9
I = diag

(
e2iπaI

1 ,e−2iπaI
1 , . . . ,e2iπaI

8 ,e−2iπaI
8 ,e2iπaI

1 ,e−2iπaI
1 , . . . ,e2iπaI

8 ,e−2iπaI
8

)
.

(2.3)

In the T-dual picture, the positions of the D3-branes along X̃I are 2πaIα , I = 4, . . . ,9. On the other
hand, the positions in T̃ 2/I45×T 4/Z2 of the D3-branes T-dual to the D5-branes are denoted 2πbIα ,
I = 4, . . . ,9, which can also be collected in WL matricesWD5

I . Note that according to what was

3
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X̃4

X̃5

T 4

Direction of Scherk-Schwarz

(a) A configuration of D3-branes associated with the D5-
branes of the initial type I theory, once T 2 is T-dualized.
In this example, the D3-branes sit on O3-planes.

X̃4

X̃5

T̃ 4

Direction of Scherk-Schwarz

(b) A configuration of D3-branes associated with the D9-
branes of the initial type I theory, once both T 2 and T 4/Z2
are T-dualized. In this example, the D3-branes sit on O3-
planes.

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(c) Superposition of pictures (a) and (b). D3-branes asso-
ciated with the D5-branes (D9-branes) of the initial type I
theory are shown in orange (green).

i′ = 3
i′ = 4

i = 1
i′ = 1

i′ = 2

i = 2

i = 3

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(d) Labelling of the T̃ 2 fixed points i′ = 1,2,3,4, and
schematic labelling of the T 4/Z2 or T̃ 4/Z2 fixed points
i = 1, . . . ,16. Odd i′ correspond to points located at
X̃5 = 0, while even i′ are associated with points at X̃5 = π ,
where X̃5 is the coordinate T-dual to the direction along
which the Scherk-Schwarz mechanism is implemented.

Figure 1: Geometric T-dual description of the moduli arising from the NN and DD sectors of the orientifold theory.
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said earlier, the WL matricesWD9
I andWD5

I , I = 6, . . . ,9, contain less than 8 degrees of freedom
when pairs of D3-branes have rigid positions at fixed points of T̃ 4/Z2 or T 4/Z2.

Configurations where all D3-branes are located at the corners of the internal box (i.e. sitting on
the O3-planes of the appropriate T-dual descriptions) are of particular interest since they guarantee
the potential to be critical with respect to the marginal deformations, as will be seen in Sect. 3.1.
In this case, it is convenient to introduce a specific labelling for the internal corners. The latter are
designated by two indices ii′, where i ∈ {1, . . . ,16} labels the fixed points of T 4/Z2 (or T̃ 4/Z2),
and i′ ∈ {1, . . . ,4} labels those of T̃ 2/I45, as shown in Fig. 1d. At a given corner ii′, we call Nii′ the
number of D3-branes T-dual to D9-branes and Dii′ the number of D3-branes T-dual to D5-branes.
In this setup, all Wilson lines aIα , bIα , I = 4, . . . ,9, take values equal to 0 or 1

2 . In terms of vectors
with six components, they take values ~aii′ , where 2π~aii′ is the position of the corner ii′. These
vectors can be decomposed along T̃ 2/I45 and T 4/Z2 (or T̃ 4/Z2) as~aii′ = (~ai′ ,~ai).

In these supersymmetric configurations, the number of branes Nii′ , Dii′ and their counterparts
RN

ii′ and RD
ii′ [37, 38, 39] under the orbifold action are parametrised as

Nii′ = nii′+ n̄ii′ , Dii′ = dii′+ d̄ii′ , RN
ii′ = i(nii′− n̄ii′) , RD

ii′ = i(dii′− d̄ii′) , (2.4)

with nii′ = n̄ii′ and dii′ = d̄ii′ . The tadpole cancellation condition implies

∑
i,i′

Nii′ = 32 ⇐⇒ ∑
i,i′

nii′ = 16 , ∑
i,i′

Dii′ = 32 ⇐⇒ ∑
i,i′

dii′ = 16 , (2.5)

leading to the open string gauge group

Gopen = ∏
i,i′

U(nii′)×U(dii′) . (2.6)

The final step is to implement the spontaneous breaking of supersymmetry via a stringy ver-
sion [21, 22, 23, 24, 25] of the Scherk-Schwarz mechanism [20]. This is done by implementing a
free orbifold action on the fifth direction, X5→ X5 +π , coupled to the operator (−1)F , where F is
the spacetime fermion number. As a result, the gravitini acquire a mass

M =

√
G55

2
Ms , (2.7)

which is therefore the scale of N = 2→N = 0 spontaneous breaking of supersymmetry. M itself
is one of the marginal deformations, provided it is less than the critical value of order of the string
scale Ms, at which a tree-level tachyonic instability arises [26, 27]. In the T 2 lattice, the Scherk-
Schwarz mechanism translates into a shift F~a′S of the KK integer momentum ~m′ = (m4,m5), where
~a′S = (0, 1

2). As described above, when the WL deformations are discrete (the D3-branes sit on the
O3-planes of the appropriate six-dimensional boxes), their values along T 2 take values equal to
some ~ai′ , i′ = 1, . . . ,4. This has an important consequence on the light spectrum since KK modes
in the open string sector are massless when

~m′+F~a′S +~ai′−~a j′ = ~0 (2.8)

vanishes, and that this equation admits solutions both for bosons (F = 0) and fermions (F = 1).
This will be detailed in the next subsection and to this end, it is relevant to specify further the

5
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labelling of the T̃ 2/I45 fixed points. We will denote by i′ = 1,3 those located at the origin of the
T-dual Scherk-Schwarz direction, X̃5 = 0, and by i′ = 2,4 those at X̃5 = π (see Fig. 1d).

The model constructed so far must satisfy additional requirements to remain valid at the non-
perturbative level [30]. To state these additional constraints, let us first consider the BSGP model in
six dimensions. The disconnected parts of the moduli space are characterized by the even number
R = 0,2, . . . ,16 of pairs of D5-branes mirror to each other with respect to Ω, and that have rigid
positions at distinct fixed points of T 4/Z2. To be consistent non-perturbatively, a model must have
R = 0, 8 or 16. When R = 8, the mirror pairs must sit on the 8 corners of one of the hyperplanes
X I = 0 or π , I = 6, . . . ,9. Similarly, the number of mirror pairs of D5-branes T-dual to the D9-
branes with rigid positions in T̃ 4/Z2 must be R̃ = 0, 8 or 16. Hence, there are only 3× 3 fully
consistent components in the moduli space, which can be further reduced to 6 by T-duality:1

(R,R̃) = (0,0) , (0,8) , (0,16) , (8,8) , (8,16) , (16,16) . (2.9)

Compactifying down to four dimensions and T-dualizing T 2, there are no additional constraints on
the distribution of the D3-branes. The latter, including the 2R+ 2R̃ ones with rigid positions in
T 4/Z2 or T̃ 4/Z2, can move along the directions of T̃ 2/I45.

2.2 Massless spectrum

Massless bosons require the ends of the strings (in the D3-brane picture) to be located at
fixed points ii′ and j j′ satisfying i′ = j′. On the other hand, to be massless, the fermions need
~a′S +~ai′ −~a j′ =~0 or 2~a′S. This is the case if the corners ii′ and j j′ are on opposite sides along the
Scherk-Schwarz direction, i.e. satisfying i′ = 2i′′− 1 and j′ = 2i′′ for i′′ ∈ {1,2}, or the contrary.
Moreover, for bosons and fermions in the NN and DD sectors to be massless, the ends of the
strings (in the D3-brane picture) are further imposed to lie at the same T̃ 4/Z2 or T 4/Z2 position
i.e. i = j. For the states in the Neuman-Dirichlet (ND) sector however, i and j can be arbitrary. To
illustrate these considerations, Fig. 2a displays massless states arising in the NN sector (green) and
DD sector (orange) that are bosonic (solid strings) or fermionic (dashed strings). Similarly, Fig. 2b
shows massless strings in the ND sector (khaki) which are bosonic (solid strings) or fermionic
(dashed strings).

One can perform a precise counting of the representations under each unitary gauge group
factor. For the bosons, we have the bosonic content of N = 2 vector multiplets in the adjoint
representations of the U(nii′) and U(dii′) gauge groups, and scalars ofN = 2 hypermultiplets living
in the antisymmetric ⊕ antisymmetric representations of U(nii′) and U(dii′). We also have scalars
of hypermultiplets in the ND sector, which are in bifundamental representations of U(nii′)×U(d ji′).
The massless fermions in the NN , DD and ND sectors are those of hypermultiplets, all in various
bifundamental representations of unitary gauge groups supported on stacks of D3-branes separated
along the T-dual Scherk-Schwarz direction (and possibly along T 4/Z2 or T̃ 4/Z2 for the ND states).

In the closed string sector, all fermions initially massless in the BSGP model acquire a mass
M after implementation of the Scherk-Schwarz mechanism. The massless spectrum thus reduces
to the bosonic one encountered in the BSGP model. We obtain a total of

nclosed
B = 4×24 , nclosed

F = 0 (2.10)
1They can be connected to each other by deforming T 4/Z2 into smooth K3 manifolds [30].

6
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(a) NN and DD states are massless bosons when
they correspond in the D3-brane picture to strings
with both ends attached to the same stack of branes
(solid strings). They are massless fermions when
they correspond to strings stretched between cor-
ners of the six-dimensional box that are adjacent
along the T-dual Scherk-Schwarz direction (dashed
strings).

(b) ND states correspond to strings stretched be-
tween a stack of D3-branes (T-dual to D9-branes)
and a stack of D3-branes (T-dual to D5-branes).
They are massless bosons (solid strings) when the
stacks are located on corners with common coordi-
nates in T̃ 2/I45. They are fermions (dashed strings)
when the corners have common coordinate X̃4 and
distinct coordinate X̃5.

Figure 2: Open string massless modes.

fermionc and bosonic degrees of freedom. Taking into account both the closed string and open
string sectors, the numbers nF and nB of massless fermionic and bosonic degrees of freedom in the
N = 2→N = 0 model that includes discrete WL deformations satisfy

nF−nB = 4
[
8−2∑

i,i′′

(
ni,2i′′−1−ni,2i′′

)2−2∑
i,i′′

(
di,2i′′−1−di,2i′′

)2

− ∑
i,i′′, j

(
ni,2i′′−1−ni,2i′′

)(
di,2i′′−1−d j,2i′′

)]
.

(2.11)

3. Effective potential

In this section, we consider the model described in the previous section at points in moduli
space corresponding to discrete values of the WL’s. In these backgrounds, the one-loop Colemann-
Weinberg effective potential is extremal with respect to the WL’s, and the quantum mass terms of
these moduli can be determined by Taylor expansion. However, in order to determine the true mass
matrix, this computation must be supplemented by the analysis of a generalized Green-Schwarz
mechanism [30], which implies anomalous U(1) gauge bosons to actually be massive at tree-level.

7
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This mechanism also induces masses to twisted moduli in the closed string sector. Moreover, we
will see that the internal metric (except the component involved in M when nF 6= nB ) and two-form
moduli are flat directions of the one-loop potential, up to exponentially suppressed corrections.
Finally, moduli in the ND sector may exist. When this is the case, their masses can be determined
by computing two-point functions at one loop of “boundary changing vertex operators”. However,
this is a highly non-trivial task which will be presented in a forthcoming work [31].

3.1 Wilson line mass terms and effective potential

Following the method of [2, 1], the WL mass terms can be found from the one-loop Coleman-
Weinberg effective potential V . The latter contains contributions coming from the closed-string
worldsheet topologies (torus and Klein bottle) as well as from the open string amplitudes (annulus
and Möbius strip). Because we are interested in the expansion of the potential with respect to
the WL’s/positions in configurations where the D3-branes are located on the orientifold planes,
it is convenient to describe the WL’s as fluctuations εα and ξα around such backgrounds. More
precisely, we define

aIα = 〈aIα〉+ ε
I
α , 〈aIα〉 ∈

{
0,

1
2

}
, bIα = 〈bIα〉+ξ

I
α , 〈bIα〉 ∈

{
0,

1
2

}
. (3.1)

As mentioned in the introduction, we are interested in regions of moduli space where the KK mass
scale associated with the large Scherk-Schwarz direction X5 is lower than the string scale as well
as all other mass scales induced by the compactification moduli GIJ . In this case, the effective
potential takes the form [1]

V =
Γ
(5

2

)
π

13
2

M4
∑
l5

N2l5+1(ε,ξ ,G)

|2l5 +1|5
+O

(
(MsM)2e−2πc Ms

M

)
, (3.2)

where c is a positive constant of order 1. The quantity N2l5+1(ε,ξ ,G) captures the contribution
of the potential coming from the lightest states, which correspond to KK modes propagating along
X5. The other states being supermassive compared to the supersymmetry breaking scale M, they
yield exponentially suppressed contributions.

In order to find the mass terms of the εI and ξ I , one must expand N2l5+1(ε,ξ ,G) up to
quadratic order, and restrict the result to the dynamical WL degrees of freedom. As previously
said, for the D3-branes T-dual to the D5-branes, there are 16 independent positions along T̃ 2/I45,
and at most 8 positions in T 4/Z2. A similar counting is valid for the D3-branes T-dual to the D9-
branes. We label the dynamical positions in T̃ 2/I45 with an index r′, and in T 4/Z2 or T̃ 4/Z2 with
an index r,

ε
I
r , I = 6, . . . ,9, r = 1, . . . ,∑

i,i′

⌊
Nii′

4

⌋
= ∑

i,i′

⌊nii′

2

⌋
= 8− R̃

2
,

ξ
I
r , I = 6, . . . ,9, r = 1, . . . ,∑

i,i′

⌊
Dii′

4

⌋
= ∑

i,i′

⌊
dii′

2

⌋
= 8−R

2
,

ε
I′
r′ , ξ

I′
r′ , I′ = 4,5, r′ = 1, . . . ,16 .

(3.3)

8
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Is is convenient to denote by i(r)i′(r) the corner in the appropriate T-dual picture around which
2πε I

r or 2πξ I
r fluctuates, and by i(r)ı̂′(r) the corner which is on the opposite side of the fifth di-

rection. Similarly, we denote by i(r′)i′(r′) the corner around which 2πε I′
r′ or 2πξ I′

r′ fluctuates, and
by i(r′)ı̂′(r′) the corner which is on the opposite side of the fifth direction. In these notations, the
result reads

N2l5+1(ε,ξ ,G) = nF−nB +32π
2(2l5 +1)2

{

∑
r

(
ni(r)i′(r)−ni(r)ı̂′(r)−1

)
ε

I
r ∆

IJ
ε

J
r +∑

r

(
di(r)i′(r)−di(r)ı̂′(r)−1

)
ξ

I
r ∆IJξ

J
r

+∑
r′

(
ni(r′)i′(r′)−ni(r′)ı̂′(r′)−1+

1
4 ∑

i

(
dii′(r′)−diı̂′(r′)

))
ε

I′
r′∆

I′J′
ε

J′
r′ (3.4)

+∑
r′

(
di(r′)i′(r′)−di(r′)ı̂′(r′)−1+

1
4 ∑

i

(
nii′(r′)−niı̂′(r′)

))
ξ

I′
r′ ∆

I′J′
ξ

J′
r′

+O
(
ε

4,ξ 4)} ,

where the delta tensors involve the metric G, and can be found in Ref. [1]. Because these tensors
have positive eigenvalues, the signs of the mass terms are those of the pre-factors, in parentheses.
Note that, with techniques similar to those described in [6, 7, 19, 2, 1], these pre-factors can be
determined by simple algebraic computations using the sole knowledge of the massless spectrum
and their representations. They can be expressed in terms of Dynkin indices. Notice that Eq. (3.4)
shows explicitly that the backgrounds under considerations are extrema of the potential.

3.2 Mass generation via generalized Green-Schwarz mechanism

Since all N = 1 supersymmetric theories in six dimensions are chiral, anomaly cancellations
in the BSGP type IIB orientifold model on T 4/Z2 proceed in a non-trivial way. For any values of
the WL’s along T 4/Z2 for the D9-brane gauge group, and arbitrary positions of the D5-branes in
T 4/Z2, the fermionic spectrum ensures the cancellation of the irreducible gauge and gravitational
anomalies. However, there are residual reducible anomalies, which are described by an anomaly
polynomial I8 explicitly written down in [30]. When the WL’s and positions take discrete values
~ai, the gauge symmetry generated by the D9-branes and D5-branes is a product of unitary groups,

∏
i/ni 6=0

U(ni)× ∏
j/d j 6=0

U(d j) , where ∑
i

ni = ∑
i

di = 16 , (3.5)

and where the rank is 32. As usual in six dimensions, the anomaly polynomial I8 does not fac-
torise, reflecting the fact that massless forms transform nonlinearly under gauge transformations
and diffeomorphisms. In the case at hand, these forms are RR fields belonging to the closed string
spectrum: there is the two-form C in the untwisted sector, as well as sixteen four-forms Ci

4 in
the twisted sector. By Hodge duality (dCi

4 = ∗dCi
0), the magnetic four-form degrees of freedom

are equivalent to electric pseudoscalars Ci
0. Each of them combines with 3 NS-NS scalars of the

twisted sector, thus realizing the bosonic part of the massless twisted hypermultiplet localized at
the fixed point i of T 4/Z2.
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Anomaly cancellation requires the effective action to contain tree-level couplings proportional
to ∫

C∧X4 or ∑
i,a

cia

∫
Ci

0∧F3
a +∑

i,a
cia

∫
Ci

4∧Fa , (3.6)

where Fa, a= 1, . . . ,16, are the field strengths of the Cartan U(1) generators of ∏i/di 6=0U(di), while
Fa, a = 17, . . . ,32, are those of ∏i/ni 6=0U(ni). Similar couplings involving trR2 also exist. In the
above expressions, the coefficients are [30, 1]

cia = 4δa∈i , for a = 1, . . . ,16 ,

cia =−e4iπ~ai·~a j(a) , for a = 17, . . . ,32 ,
(3.7)

where δa∈i = 1 when the a-th U(1) belongs to the Cartan subalgebra of U(di), and δa∈i = 0 other-
wise. Moreover, we denote by 2π~a j(a) the coordinate vector of the corner of T̃ 4/Z2 which supports
the Cartan U(1) labelled by a of ∏ j/n j 6=0U(n j) (in a T-dual description). The Lagrangian can be
cast into a local form by dualizing the last term in Eq. (3.6), which becomes

∑
i

∫ (
Ci

0 +∑
a

ciaAa
)
∧∗
(
Ci

0 +∑
b

cibAb
)
, (3.8)

where the Aa denote the Abelian vector potentials, Fa = dAa. As a result, the latter admit a tree-level
mass term

1
2 ∑

a,b
AaM2

abAb , where M2
ab = ∑

i
ciacib . (3.9)

The mass matrixM2 can be diagonalized by an orthogonal transformation, Aa =PabÂb. Denoting
the eigenvalues byM2

a, the nonzero ones (which are actually positive) are in one-to-one correspon-
dence with the Stueckelberg fields Ci

0 which are eaten by the Âa’s that gain a mass. One can see
that if there are 16 or fewer unitary factors in Eq. (3.5), all of them are broken to SU groups, while
if there are more than 16 unitary factors, exactly 16 are broken to SU groups [30]. By supersymme-
try, all twisted hypermultiplets initially containing the Ci

0’s which are eaten also become massive.
They combine with Abelian vector multiplets to become long massive vector multiplets. As a re-
sult, there are between 2 and 16 twisted quaternionic scalars for which stability is automatically
guaranteed.

Compactifying down to four dimensions, we may define the WL’s along T 2 as ÂI′
a = ξ̂ I′

a , and
write their total mass terms by adding the tree-level contributions to the one-loop effective potential
corrections,

ξ̂
I′
d

[
M2

d δdc δI′J′+Pad
∂V

∂ξ I′
a ∂ξ J′

b
Pbc

]
ξ̂

J′
c , (3.10)

where (ξ I′
1 , . . . ,ξ

I′
32) ≡ (ξ I′

1 , . . . ,ξ
I′
16,ε

I′
1 , . . . ,ε

I′
16). In the above formula, both contributions are pro-

portional to the open string coupling. However, while the first one is a supersymmetric mass term
proportional to M2

s , the second one scales like (M2/Ms)
2, which is always subdominant in the

regime M < Ms. Hence, all WL’s of massive Âa’s are super heavy and can be safely set to zero in a
study of moduli stability,

ξ
I′
a ≡ 0 , whenM2

a > 0 . (3.11)

10
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For the remaining WL’s denoted ξ I′
u to be non-tachyonic at one-loop, one needs to find brane

configurations such that the mass matrix

Pau
∂V

∂ξ I′
a ∂ξ J′

b
Pbv , for u,v such thatM2

u,M2
v = 0 , (3.12)

has non-negative eigenvalues.

3.3 Closed string moduli

We have already mentioned that 2 to 16 of the twisted quaternionic moduli acquire a mass
via the Green-Schwarz mechanism described in the previous subsection. We have not computed
the masses of the remaining twisted closed-string moduli that may be determined by evaluating
two-point functions.

In the untwisted sector, when the D3-branes sit on the O3-planes, all fluctuations in Eq. (3.4)
vanish and the potential reduces to Eq. (1.2), which does not involve the metric components GIJ .
Hence, up to exponentially suppressed corrections, all components GIJ are flat directions, except
G55 (which appears in the definition of M) when nF−nB 6= 0. Moreover, the RR two-form CIJ is
mapped by heterotic-type I duality to the antisymmetric tensor BIJ . In four dimensions, the duality
is at weak coupling on both sides [33, 34, 35, 36]. In the heterotic theory, when M is lower than
all other mass scales, the dependence of the Colemann-Weinberg effective potential on BIJ arises
from loops of generically massive states that become massless at special points in moduli space.
The key point is that these states have non-trivial winding numbers along the internal directions and
are therefore mapped to D1-branes on the type I side. As a result, up to exponentially suppressed
corrections, the one-loop effective potential does not depend on CIJ , implying these moduli to be
flat directions.

4. Stability of the models

Let us now consider explicit examples of brane configurations and study the stability of the
backgrounds at one-loop. As said earlier, we do not compute in the present work the quantum
masses of the moduli in the ND sector. However, the absence of such fields is ensured when the
D3-branes associated with the D9-branes and those associated with the D5-branes never share the
same position in T̃ 2/I45

no moduli in the ND sector: nii′d ji′ = 0 ∀i, j, i′ . (4.1)

We first explore in detail models belonging to the non-pertubatively consistent components of the
moduli space (R,R̃) = (0,0) and (R,R̃) = (16,16). We then describe configurations lying in the
component (R,R̃) = (8,8), which are tachyon free at one loop, with a vanishing (up to exponen-
tially suppressed corrections) or positive potential.

4.1 Component (((R,,,R̃))) === (((000,,,000)))

In this component of the moduli space, there is no brane with rigid position in T 4/Z2 or
T̃ 4/Z2. Let us analyze the simplest configuration where all D3-branes T-dual to the D5-branes are

11
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located at the same fixed point i0 of T 4/Z2, and similarly the D3-branes T-dual to the D9-branes
are coincident on the fixed point j0 of T̃ 4/Z2. In six dimensions, the open string gauge group is
U(16)×U(16). The positions ε I

r and ξ I
r along T̃ 4/Z2 or T 4/Z2 all have the same positive mass

term coefficient2 equal to 15 in Eq. (3.4), and are therefore stabilized.
In order to write the classical mass matrix squared M2 of the vector potentials Aa, a =

1, . . . ,32, of the Cartan subgroup (see Sect. 3.2), it is convenient to label by r′ ≡ a = 1, . . . ,16
those associated with the D5-brane gauge group, and by r̃′ ≡ a = 17, . . . ,32 those corresponding to
the D9-branes. In these notations, the mass matrix squared reads

M2 =

(
M2

r′s′ M2
r′ s̃′

M2
r̃′s′ M2

r̃′ s̃′

)
, (4.2)

where the four 16×16 blocks are

M2
r′s′ = 16 , M2

r′ s̃′ =−4e4iπ~ai0 ·~a j0 ,

M2
r̃′s′ =−4e4iπ~ai0 ·~a j0 , M2

r̃′ s̃′ = 16 .
(4.3)

This matrix has two positive eigenvalues while the others vanish. As expected, two (anomalous)
combinations of Abelian vector potentials are massive, leading to the actual SU(16)× SU(16)
gauge group. The WL’s along T̃ 2 of the massive gauge bosons must be set to zero, which yields

ξ
I′
1 =− ∑

r′ 6=1
ξ

I′
r′ and ε

I′
1 =− ∑

r̃′ 6=1
ε

I′
r̃′ . (4.4)

Let us analyze in detail the case where the D3-branes associated with the D5-branes are all located
at the corner i′0 of T̃ 2/I45, and similarly those corresponding to the D9-branes are coincident at
the fixed point j′0. Before the Green-Schwarz mechanism is taken into account, the mass terms in
Eq. (3.4) of the positions ε I′

r and ξ I′
r along T̃ 2/I45 depend on the precise distribution of the stacks.

The mass coefficients are (16−0−1+ δ

4 16) = 15+4δ , where

(a) δ =+ 1 if the two stacks of branes are at the same T̃ 2/I45 position: i′0 = j′0,

(b) δ =− 1 if the two stacks of branes have the same coordinate X̃4 but sit on opposite sides of
the Scherk-Schwarz direction: i′0 = 2i′′0−1 and j′0 = 2i′′0 or the contrary,

(c) δ = 0 if the stacks do not have the same coordinate X̃4.

Fig. 3 depicts these three possibilities. In all cases, the WL’s are therefore stabilized. However, to
find the correct masses once the Green-Schwarz mechanism is taken into account, ξ I′

1 and ε I′
1 can

be eliminated thanks to Eq. (4.4), which yields a new mass matrix squared for the 30 remaining
degrees of freedom.

As a consequence of the Green-Schwarz mechanism, two twisted quaternionic scalars acquire
a mass, while 14 remains to be dealt with. Moreover, moduli in the ND sector coming from
the hypermultiplet in the bifundamental of SU(16)× SU(16) are present in Case (a), and their
masses should also be analyzed in detail [31]. In Cases (a), (b), (c), the massless spectrum yields
nF−nB =−4064−256δ leading to a negative potential.

2Those integer coefficients that appear in parentheses in Eq. (3.4).

12



P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
6
4

Moduli stability in type I string orbifold models Thibaut Coudarchet

32

32
X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(a) The 32 D3-branes associated with
the D5-branes and the 32 ones asso-
ciated with the D9-branes are located
at the same T̃ 2/I45 position.

32

32

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(b) The two stacks are located on op-
posite sides of the Scherk-Schwarz
direction but have the same coordi-
nate X̃4.

32

32

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(c) The two stacks have distinct co-
ordinate X̃4. Their positions along
the Scherk-Schwarz direction is irrel-
evant.

Figure 3: Geometric representation of three brane configurations of the component (R,R̃) = (0,0). The D3-branes
T-dual to the D5-branes (D9-branes) are located on the same fixed point of T 4/Z2 (T̃ 4/Z2).

4.2 Component (((R,,,R̃))) === (((111666,,,111666)))

All D3-branes have rigid positions in T 4/Z2 or T̃ 4/Z2. They are grouped by pairs located at
each fixed point of T 4/Z2 or T̃ 4/Z2, which yields the gauge symmetry U(1)16×U(1)16. The mass
matrix squaredM2 of the Abelian vector potentials, which is given by

M2
r′s′ = 16δr′s′ , M2

r′ s̃′ =−4e4iπ~ai(r′)·~ai(s̃′) ,

M2
r̃′s′ =−4e4iπ~ai(r̃′)·~ai(s′) , M2

r̃′ s̃′ = 16δr̃′ s̃′ ,
(4.5)

possesses 16 positive eigenvalues and 16 vanishing ones. Setting to zero the WL’s along T 2 of the
massive combinations allows to eliminate all ε I′

r′ degrees of freedom,

4ε
I′
r̃′ =−∑

s′
e4iπ~ai(r̃′)·~ai(s′)ξs′ . (4.6)

Moreover, the Green-Schwarz mechanism also induces large masses to the 16 twisted quaternionic
moduli, ensuring the orbifold point T 4/Z2 of the K3 manifold to be stabilized. Let us now consider
specific brane configurations and analyze the stability of the WL’s.

Example 1: The simplest example amounts to puting all D3-branes T-dual to the D5-branes at a
same T̃ 2/I45 fixed point i′0, and similarly all D3-branes T-dual to the D9-branes at the same fixed
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point j′0, so that

ni,i′0
= 1, ∀i ∈ {1, . . . ,16} and di, j′0

= 1, ∀i ∈ {1, . . . ,16} . (4.7)

Again, three cases (a), (b) and (c) are allowed, corresponding to having respectively the two kinds
of branes at the same fixed points of T̃ 2/I45 (i′0 = j′0), or facing each other along the Scherk-Schwarz
direction (i′0 = 2i′′0−1, j′0 = 2i′′0 or the contrary), or finally having different coordinates along X̃4,
as shown in Figs 4a–4c.

• In Case (a), all mass terms of the WL’s along T 2 are strictly positive in Eq. (3.4), implying
these moduli to be stabilized. However, there are 162 massless quaternionic scalars arising
from the ND sector, whose masses at one-loop should be analyzed in order to determine
whether the configuration is stable or not. The potential is negative, with nF−nB =−1248.

• In Case (b), the mass terms of the WL’s along T 2 are all strictly negative in Eq. (3.4). Hence,
the brane configuration is unstable. Before condensation of the moduli, the potential is posi-
tive, with nF−nB = 800.

• In Case (c), all mass terms of the WL’s along T 2 vanish in Eq. (3.4). After elimination of
the ε I′

r̃′ thanks to Eq. (4.6), all moduli ξ I′
r′ remain massless. In fact, it turns out that (up to

exponentially suppressed terms) the one-loop effective potential does not depend on these
moduli, which are therefore flat directions. As in Case (b), there are no moduli in the ND
sector. The potential is negative, with nF−nB =−224.

Example 2: More involved configurations can be considered where the pairs of branes of each
typess are distributed at different fixed points of T̃ 2/I45. It is then possible to find stable brane
configurations even when mass terms in Eq. (3.4) are negative. For example, consider Case (d) in
Fig. 4d. There are 15+ 15 pairs of D3-branes T-dual to D5-branes or D9-branes at a given fixed
point of T̃ 2/I45, while the two remaining pairs are displaced along X̃4 and face each other along
X̃5. The mass-term coefficients of the WL’s along T 2 and associated with the 2×15 pairs of branes
are 15

4 , while those associated with the two remaining ones are −1
4 . It turns out that eliminating

the 16 ε I′
r′ thanks to Eq. (4.6) yields a new 16×16 mass matrix with only positive eigenvalues. As

a result, the brane configuration is stable, provided the 152 quaternionic moduli arising from the
ND sector do not introduce instabilities. The magnitude of the potential in this case is given by
nF−nB =−1120.
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X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(a) The 16 pairs of D3-branes asso-
ciated with the D5-branes and the 16
ones associated with the D9-branes
are located at the same T̃ 2/I45 posi-
tion.

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(b) The pairs of different kinds are
located on opposite sides of the
Scherk-Schwarz direction, but have
the same coordinate X̃4.

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(c) The pairs of different kinds
are located at different X̃4 position.
Their positions along the Scherk-
Schwarz direction is irrelevant.

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(d) 15 pairs of each kind are located
at the same T̃ 2/I45 fixed point, while
the remaining pairs, displaced along
X̃4, face each other along the Scherk-
Schwarz direction.

14 10

10
X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(e) Brane configuration tachyon free
at one loop, with nF = nB.

12 10

10
X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(f) Brane configuration tachyon free
at one loop, with nF = nB.

Figure 4: Geometric representations of various brane configurations in the components (16,16) (Cases (a), (b), (c),
(d)) and (8,8) (Cases (e), (f)) of the open-string moduli space.
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4.3 Component (((R,,,R̃))) === (((888,,,888)))

As explained in the introduction, configurations that are tachyon free at one loop, with posi-
tive or vanishing (up to exponentially small contributions) potentials are expected to be rare. For
instance, for toroidal compactifications in dimension d ≥ 5, it is shown in Refs [2, 15] that there ex-
ists only one orientifold model (with non-exotic orientifold planes) consistent non-perturbatively,
tachyon free at one loop and with non-negative potential. It is defined in five dimensions, has a
trivial open string gauge group SO(1)32,3 and satisfies nF−nB = 8×8. In the following, we show
that in the orbifold case, more examples exist in the component (8,8) of the open string moduli
space.

Exponentially suppressed potential: We have found two tachyon free models satisfying nF−
nB = 0. Their open string gauge groups are U(1)7×U(2)×U(7)×U(1)6×U(5)2 and U(1)7×
U(3)×U(6)×U(1)6×U(5)2, and the D3-brane configurations are depicted in Figs 4e and 4f,
respectively.4 In the first case, the D3-branes T-dual to the D5-branes are distributed in T 4/Z2 as
7 pairs and one stack of 18 D3-branes, which is split in T̃ 2/I45 into 14+4 branes. The D3-branes
T-dual to the D9-branes are distributed as 6 pairs and two stacks of 10. The second configuration
is identical to the previous one, up to the splitting of the 18 D3-branes now into 12+6.

In both cases, all position moduli along T 4/Z2 or T̃ 4/Z2 are massive. Moreover, because
there are 17 unitary gauge group factors, all of the 16 twisted quaternionic moduli get a mass
thanks to the Green-Schwarz mechanism. The latter also implies all WL’s along T̃ 2/I45 to be
massive. Moreover, the ND sector does not contain moduli fields. The one-loop potential admits
flat directions parametrised by the internal metric (including G55 i.e. M), the dilaton, and the RR
two-form. Notice that these configurations exist in four dimensions but not in five.

Positive potential: Let us analyze the three configurations shown in Fig. 5a–5c, which yield an
identical open string gauge group U(1)6 ×U(5)2 ×U(1)6 ×U(5)2. All position moduli along
T 4/Z2 and T̃ 4/Z2 are massive. Taking into account the Green-Schwarz mechanism, the WL’s
along T̃ 2/I45 are either massive or massless, depending on the case at hand. There are no moduli in
the ND sector. Moreover, because there are 16 unitary gauge group factors, all twisted quaternionic
moduli are massive.

The configuration in Fig. 5a yields nF− nB = 40. Notice that it may be considered in five
dimensions, by decompactifying the direction X4. In the case shown in Fig. 5b, the direction X̃4 is
used to isolate one pair of D3-branes, which leads to nF−nB = 24. By isolating a second pair of the
same kind as depicted in Fig. 5c, one obtains nF−nB = 8. As another example, one may consider
the configuration in Fig. 5d, which also leads to nF−nB = 8, but contains one quaternionic scalar
in the ND sector whose mass needs to be analyzed at one loop.

3SO(1) denotes the group containing only the neutral element.
4The two hyperplanes of 8 fixed points supporting the branes with rigid positions in six dimensions were taken to

be identical.
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10

10

10

10

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(a) Brane configuration tachyon free
at one loop, with nF−nB = 40.

10

10

10

10

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(b) Brane configuration tachyon free
at one loop, with nF−nB = 24.

10

10

10

10

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(c) Brane configuration tachyon free
at one loop, with nF−nB = 8.

10

10

10

10

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(d) Brane configuration with
nF−nB = 8.

Figure 5: Brane configurations with nF−nB > 0.
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