
P
o
S
(
R
A
D
C
O
R
2
0
1
9
)
0
2
4

Top-quark effects in diphoton production through
gluon fusion at NLO in QCD

Xiaoran Zhao∗

Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de
Louvain, Belgium
E-mail: xiaoran.zhao@uclouvain.be

Diphoton production is one important channel at hadron colliders. Gluon fusion into diphoton
via quark loops provide a substantial contribution. When the top quark mediated contribution
is negligible below the top pair threshold, it becomes important at the threshold and above. We
present the first complete computation of the next-to-leading order(NLO) corrections to this pro-
cess, including contributions from the top quark. The analytical expression for relevant two-loop
diagrams are unknown and we developed a numerical algorithm to compute them. We found
that NLO corrections is large over all kinematic regions. The top quark contribution leads to
change of slope below and above the top pair threshold, and it is more visible at NLO. We further
find that above the top quark threshold, NLO corrections is larger after including the top quark
contribution.
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1. Introduction

The production of a pair of photons (diphoton) is an important process at hadron collid-
ers. The final state signature is experimentally clean, and experimental measurements are avail-
able at Tevatron[1, 2] and LHC[3, 4]. It is one golden channel for the discovery of the Higgs
boson[5, 6], and H → γγ remains one of the cleanest final states to study the properties of the
Higgs boson. Diphoton channel is also very important channel on searching new physics beyond
the Standard Model[7, 8], including new scalar or spin-2 reasonance, multiple resonances from
extra-dimension/clockwork models[9, 10, 11, 12], or peak-dip structures due to new particles in
loops[13].

At leading order, it is produced through quark-antiquark annihilation. Next-to-Leading or-
der(NLO) corrections to this process has been known since 2000[14]. Recently, NNLO corrections
are also know and available in public code[15, 16, 17]. In addition to quark-antiquark annihila-
tion, diphoton can also be produced through gluon fusion. Formally it can be counted as part of
NNLO corrections to qq̄→ γγ . However, due to large gluon-gluon luminosity, the contribution
from gluon fusion is anomalous large. Since the gluon fusion process is separately gauge-invariant
and IR finite, it can be treated as a standalone channel, and thus NLO corrections can be defined
and calculated, without consider full NNNLO corrections to qq̄→ γγ . However, at NLO, only
the contribution from massless quarks are known[18, 16]; the contribution from the top quark is
still missing. Naively counting electric charge, after including top quark the cross section can be
1.86 times larger. Therefore, including the contribution from top quark is essential for precise
prediction.

2. Method
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Figure 1: Representative diagrams are shown for the LO, real emission, and virtual contribution.

The cross section for gg→ γγ is given by

dσ
NLO = dσ

LO +dσ
R +dσ

V +dσ
C (2.1)

where dσLO is the LO cross section, dσR is the corrections with one more external legs(gg→
γγg,q(q̄)g→ γγq(q̄),qq̄→ γγg), dσV is the corrections with one more loop, and dσC is the counter
term from the parton distribution function. We show representative Feynman diagrams in Fig. 1.
The last three terms are IR divergent, and only their sum is finite. To handle the IR divergence, we
adopt the dipole subtraction method[19], which introduces extra terms for the last three terms so
that they become finite, while the extra terms sum up to zero.
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With the subtraction method available, we also need to calculate the matrix elements. For the
real corrections, since they are one-loop process, automated tools are available to compute them.
In particular, we adopt MADGRAPH5_AMC@NLO[20] and Recola2[21, 22] to compute those
matrix elements.

The main challenge is on the calculation of the two-loop virtual amplitude. In the case that
internal lines are massless quarks, the results are known since 2001[23]. However, for massive
quark contribution, the results remain unknown. The main reason is that not all master integrals are
known analytically; only part of them are known(mostly planar). Instead of analytical approach,
we developed a numerical method to calculate them[24].

We use QGRAF[25] to generate corresponding Feynman diagrams, which yields 138 dia-
grams. We use FORM[26] to deal further proceed the expressions of the amplitude. We adopt
projector methods to decompose the amplitudes into form factors. In particular, we work under d-
dimension, and we get 10 different tensor bases. We organize the Feynman integrals according to
their propagator denominators, obtaining 33 different integral families. After projection, we obtain
the form factors written in terms of around 40000 scalar integrals at two-loop. We adopt FIRE5[27]
with LiteRed[28, 29] to perform integration-by-parts(IBP) reduction, and we get 1180 master inte-
grals, not counting relations among families. If we consider symmetries among different families,
indeed we only have 161 master integrals.

With IBP reductions, it was shown[30, 31] that the derivatives of master integrals can be
written in terms of linear combination of themselves, with coefficients are rational expressions on
the dimension d and kinematics. Such system of differential equations provide an important way on
analytical computation of master integrals. On the other hand, numerical methods for differential
equations are well-studied in mathematics. Even if we have multiple kinematics, and thus such
system of differential equations is a system partial differential equations by nature, we can integrate
all kinematic iteratively. Therefore, numerical algorithms for ordinary differential equations can be
applied. We adopt numerical methods for initial value problems to solve the differential equations,
which requires numerical value of master integrals in a specific point as the initial condition to fully
fix the solution.

We adopt the sector decomposition method[32] to obtain the initial condition. The sector
decomposition method is a systematic method that resolving IR and UV divergence for Feynman
integrals. After resolving divergences, the remaining integrals can be expanded order-by-order in
ε , and numerical integration can be carried out on those integrals. When working in the Euclidean
region, saying that the −i0 prescription can be discarded, the integrands are well-behaved, and
numerical integration is quite efficient with suitable methods. In particular we adopt the quasi-
Monte Carlo methods[33]. We implement the sector decomposition method in NIFT[34].

In Table 1, we show numerical results of some relevant Feynman integrals obtain by NIFT and
compare it with analytical expression. The corresponding diagrams are shown in Fig. 2. To obtain
numerical results to O(10−7) precision, only several seconds are spent.

Since the initial condition is given in the unphysical region, we need to design an integration
contour to evolve it to the physical region. The main requirement of the integration contour is that
it should not cross branch cuts. It can be also understood that along the integration contour the
Feynman integrals can be defined without the −i0 prescription, and the integration contour should
connect to the target point according to such prescription. For the integrals appear in the two-loop

2



P
o
S
(
R
A
D
C
O
R
2
0
1
9
)
0
2
4

Top quark effects in gg→ γγ Xiaoran Zhao

c0 time (s)

I1

IC1
NIFT −0.059087788(6) 1.93

Analytic −0.059087788 –

IC2
NIFT −0.056016652(5) 1.74

Analytic −0.056016650 –

Isub
2

IC1
NIFT 0.28729542(1) 3.55

analytic 0.28729543 –

IC2
NIFT 0.26181028(1) 3.57

analytic 0.26181029 –

Table 1: Numerical results for the initial condition obtained with NIFT are shown and compared
with analytic results.
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Figure 2: The diagrams of relevant Feynman integrals are shown.
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Figure 3: The integration contour and relevant branch cuts are shown.

amplitude of gg→ γγ , we show the integration contour and branch cuts in Fig. 3.
In Table 2, we compare numerical results obtained via our algorithms with the one from ana-

lytical expressions. We can see that O(10−7) precision can be obtained within 1 second. In Table
3, we show results for I2 and I3, whose analytical results are unknown. From the discrepancy of
results from two differential initial condition, we conclude that our numerical precision is still at
O(10−7). For cross check, we also show results obtained from pySecDec, which is much slower
and the precision is much lower.

To further speed up the numerical evaluation, we first compute the results at a set of predefined
kinematic points in the physical region. After such initial condition table is setup, when evaluating
the master integrals at each point, we pick a point in such set and use that result as the initial
condition to compute the results. Since the initial condition belongs to the physical region now, it
is much closer to the target point, and the integration contour is much simpler and shorter, which
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(s = 5, t =−2) c0 time (s)

I1

IC1 0.573661717− i0.45602298 0.11
IC2 0.573662051− i0.45602316 0.10

Analytic 0.573661756− i0.45602309 –

Isub
2

IC1 −0.077764616+ i0.34306744 0.26
IC2 −0.077764595+ i0.34306737 0.23

Analytic −0.077764620+ i0.34306741 –

Table 2: Numerical results for I1 and I2,sub obtained with our algorithm are shown and compared
with analytic results.

(s = 5, t =−2) c0 c1 c2 time (s)

I2

IC1 0.02188084− i0.00000002 −0.0870259+ i0.05170117 −0.246416− i0.17602070 0.26
IC2 0.02188080+ i0.00000001 −0.0870262+ i0.05170118 −0.246417− i0.17602072 0.23

pySecDec 0.02187(3) + i0.00003(3) −0.0869(3) + i0.0518(4) −0.248(2) − i0.175(2) O(104)

I3

IC1 −0.0599222+ i0.4204527 −1.2093294+ i1.1271787 −3.737851+ i0.435880 0.74
IC2 −0.0599219+ i0.4204528 −1.2093298+ i1.1271798 −3.737851+ i0.435879 0.78

pySecDec −0.05998(7)+ i0.42048(8) −1.2100(7) + i1.1262(7) −3.737(3) + i0.430(3) O(104)

Table 3: Numerical results obtained with our algorithm from two different choices of initial condi-
tions for the Feynman integral I2 and I3 are shown. The results from pySecDec[35] are also shown
for comparison.

yield a significant speedup. Furthermore, since the results of the initial condition table are only
need to be computed once, we demand higher accuracy when computing them.

In addition, we observed that t is unchanged during s evolution. Therefore, we reorganize the
expressions into a form which is rational expressions on ε and s, with coefficients are polynomials
on t. The coefficients are unchanged when evolving the differential equations, and thus they only
need to be computed once in each evolution. Similar reorganized can be done for t evolution.

∂ I
∂ s

= Ps({ε,s, t};Z)I→
∂ I
∂ s

= Ps({ε,s};R({t};Z))I (2.2)

∂ I
∂ t

= Pt({ε,s, t};Z)I→
∂ I
∂ t

= Pt({ε, t};R({s};Z))I (2.3)

For better numerical stability in the backward region(|u| � |t|, |s|), we use u to compute the
right-hand side of differential equations. That is to say, we adopt the following forms in the back-
ward region.

∂ I
∂ s

= Qs(ε,u;R({t};Z))I (2.4)

∂ I
∂ t

= Qt(ε,u;R({s};Z))I (2.5)

In total, 10000 CPU hours are spent to obtain the initial conditions with O(10−9) precision.
We expand up to O(ε) for 7-propagator master integrals, and O(ε2) for other master integrals. For
each phasespace point, it costs around 1 second to evaluate the two-loop amplitude.
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3. Results
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In Fig. 4a, we show the differential cross section for 13 TeV LHC, only including the top
quark contribution. Below top pair threshold, the cross section is strongly suppressed, since the
amplitude scaling as O(m−4

t ). The differential cross section peaks around top pair threshold, and
NLO corrections is large in all regions. In the threshold region, there is a peak in the K-factor, due
to the contribution comes from one Coulomb gluon effects exchange.

Indeed, Coulomb gluon exchange yields corrections as αS/v, which may spoil perturbativity.
The contribution from one Coulomb gluon exchange is already included in the two-loop ampli-
tude, and multiple Coulomb gluon exchange is corresponding to the formation of toponium T (nS).
The contribution of toponium can be included explicitly by adding the contribution of Feynman
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diagram(see fig. 4b which corresponding to the following:

M2L→M2L,match = M2L +BGDT (3.1)

GDT =
+∞

∑
n=1
− 512m4

t

27n3π5 α
3
S (arcsin

√
s

2mt
)4 1

s−m2
n

(3.2)

and B = 4 e2g2
s

16π2 Q2
t

4π2

m2
t

for ++++,−−−−,++−−,−−++ helicity configurations, and B = 0 for
other helicity configurations.

In fig. 4c, we show the differential cross section in the threshold region for the top quark
only contribution. NLO corrections are quite large in such region. Furthermore, including multiple
Coulomb gluon exchanges leads a peak slightly below top pair threshold, which is corresponding
to the lightest toponium T (1S). Away from top pair threshold, the matched results reduce to the
fixed order result.

In fig. 4d, we show the differential cross section in the threshold region for the light quark
only case and after including top quark contribution. Due to negative interference effects, after
including top quark the differential cross section gets reduced. In addition, below and above the
top pair threshold we can see that the slope is differential, and such effect is more visible at NLO
than at LO.

In the low energy region, the contribution from the top quark can be described as an EFT. Tak-
ing only the Abelian part for simplicity, which is corresponding to QED case, the EFT Lagrangian
is given by:

L =− 1
4

FµνFµν +
α2Q4

m4 c1(FµνFµν)
2 +

α2Q4

m4 c2(
1
4

Fµν
εµνρλ Fρλ )2 (3.3)

ci =c1L
i +

αQ2

4π
c2L

i + . . . , i = 1,2 (3.4)

The Wilson coefficients can be obtained by matching the amplitude in the low-energy limit in the
full theory and EFT. However, naively extrapolating the amplitude to the low-energy limit(s = 0)
leads to low precision. Alternatively, we calculate the low energy limit based on Cauchy integral
formula,

f (s = 0) =
1

2πi

∮
ds

f (s)
s

=
∫ 2π

0
dφ f (s = |r|eiφ ) (3.5)

which only need the amplitude with non-zero s. In Table 4 we compare the results obtain via
the above approach with analytic results[36], and find that our results are agree with the one in
literature, with good precision.

In fig. 5, we show the differential cross section for m(γγ) ∈ [100,1000] GeV. We can see that
below top pair threshold, the top quark contribution is negligible. In the threshold region including
top quark decreases the cross section, and above threshold region the cross section becomes larger
after including top quark contribution. Moreover, the K-factor for the full case is larger than light
quark only case. As the invariant mass increases, the ratio between full case and light quark only
case slowly approaching naive six-flavour limit(1.86).
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analytic ours
c1L

1
1
90 = 0.0111111111111 · · · 0.011111111114(6)

c1L
2

7
90 = 0.0777777777777 · · · 0.07777777778(1)

c2L
1

16
81 = 0.197530864 · · · 0.1975308(1)

c2L
2

263
162 = 1.623456790 · · · 1.6234568(2)

Table 4: Comparison of Wilson coefficients obtained with our approach and analytic results.
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Figure 5: Differential cross section for diphoton production through gluon fusion at the 13TeV
LHC are shown.

4. Conclusion

We consider NLO corrections to gg→ γγ . We include both light quark contributions and the
top quark contribution. We developed numerical methods for the two-loop massive amplitudes.
We find the NLO corrections are large for the top quark contribution. We also consider resume
Coulomb gluon effects in the threshold region and match it with fixed order results. We further
examine the low-energy behavior and match it with EFT operators. We find that the slope change
below and above the top pair threshold is more visible at NLO than at LO. Going above the top
pair threshold, the differential cross section get further enhanced after including the top quark
contribution, and more closer to the naive six flavour case at NLO than at LO.
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