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The light-front wave functions of hadrons allow us to calculate a wide range of physical observ-
ables; however, the wave functions themselves cannot be measured. We discuss recent results
for quarkonia obtained in basis light-front quantization using an effective Hamiltonian with a
confining model in both the transverse and longitudinal directions and with explicit one-gluon
exchange. In particular, we focus on the numerical convergence of the basis expansion, as well as
the asymptotic behavior of the light-front wave functions. We also illustrate that, for mesons with
unequal quark masses, the maxima of the light-front wave functions depend in a non-trivial way
on the valence quark-mass difference.
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On the light-front wave functions of quarkonia Pieter Maris

1. Confining model for quarkonia

We use a model for the confining potential between a quark and an anti-quark in a color-
singlet in both the longitudinal and the transverse direction, as described in Refs. [1, 2]. The
short-range, high-momentum physics is dominated by one-gluon exchange, which we add to the
confining potential. Thus the effective light-front Hamiltonian for a quark and an anti-quark in a
flavor-singlet configuration becomes

Heff =
~k2
⊥+m2

q

x
+
~k2
⊥+m2

q̄

1− x
+κ

4~ζ 2
⊥−

κ4

(mq +mq̄)2 ∂x (x(1− x)∂x)

−CF
4παs(Q2)

Q2 ūs′(k′)γµus(k)v̄s̄(k̄)γµvs̄′(k̄′) , (1.1)

where mq and mq̄ are the masses of the quark and anti-quark, ~ζ⊥ ≡
√

x(1− x)~r⊥ is Brodsky and
de Téramond’s holographic variable [3], κ is the strength of the confinement, and the longitudinal
confinement is described by ∂x f (x,~ζ⊥) = ∂ f (x,~ζ⊥)/∂x|~ζ . The second line corresponds to the one-

gluon exchange, with CF = (N2
c − 1)/(2Nc) = 4/3 the color factor for the color singlet state, and

Q2 =−q2 > 0 is the 4-momentum squared carried by the exchanged gluon [2].
The mass spectrum and corresponding light-front wave functions (LFWF) are obtained by

diagonalizing the effective light-front Hamiltonian operator (1.1)

Heff|ψh(P, j,m j)〉 = M2
h |ψh(P, j,m j)〉 , (1.2)

where P = (P−,P+,~P⊥) is the 4-momentum of the meson, and j and m j are the particle’s total
angular momentum and magnetic projection, respectively. In the leading qq̄ Fock space we have

|ψh(P,m j)〉 ≈ ∑
s,s̄

∫ 1

0

dx
2x(1− x)

∫ d2k⊥
(2π)3 ψ

(m j)

ss̄/h (
~k⊥,x)

× 1√
Nc

Nc

∑
i=1

b†
si

(
xP+,~k⊥+ x~P⊥

)
d†

s̄i

(
(1− x)P+,−~k⊥+(1− x)~P⊥

)
|0〉 , (1.3)

with b† and d† the quark and anti-quark creation operators and ψ
(m j)

ss̄/h (
~k⊥,x) the valence space

LFWF with s and s̄ the spin of the quark and antiquark, properly normalized to

∑
s,s̄

∫ 1

0

dx
2x(1− x)

∫ d2k⊥
(2π)3 ψ

(m′j)∗
ss̄/h′ (

~k⊥,x)ψ
(m j)

ss̄/h (
~k⊥,x) = δhh′δm j,m′j . (1.4)

Without the one-gluon exchange, this model can be solved analytically, and the LFWFs can
be expressed as a product of a 2-dimensional harmonic oscillator (HO) function φnm with strength
parameter κ and a Jacobi polynomial times power-law factors χl in the longitudinal direction [1].
These analytic solutions form a convenient and complete basis for expanding the LFWFs

ψss′/h(~k⊥,x) = ∑
n,m,l

cnml
ss′/h φnm

(
~k⊥/

√
x(1− x)

)
χl(x) . (1.5)

By expressing our effective Hamiltonian Eq. (1.1) in this basis, Eq. (1.2) becomes a matrix equation
for the coefficients cnml

ss′/h, which we diagonalize numerically. In the limit of a complete (but infinite-
dimensional) basis, this gives us the exact LFWFs for this Hamiltonian in the leading Fock space.
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On the light-front wave functions of quarkonia Pieter Maris

This model has been used to compute a number of observables as such as radiative decays and form
factors [4, 5], well as in diffractive vector meson production [6], showing reasonable agreement
with the available experimental data.

2. Numerical convergence

The precision of our numerical calculations depends both on the number of basis states that we
keep in our expansion, and on the precision of the evaluation of the Hamiltonian matrix elements
in this basis. The number of basis states is controlled by the truncation parameters Nmax and Lmax

for the transverse and longitudinal directions, respectively; for simplicity, we keep Nmax = Lmax.
The matrix elements are evaluated numerically, using nx and nk integration points for the x and k⊥
integrations, respectively; at a minimum we keep nx ≥ Lmax and nk ≥ Nmax.

2.1 Meson mass and electroweak decay constants

The dependence of the masses and decay constants on the basis truncation parameter Nmax

is shown Fig. 1 for the lowest pseudoscalar and vector Qq̄ states. The meson masses appear to
converge reasonably well, both with Nmax and with the number of integration points nx and nk.
They do not necessarily converge to the physical values – the parameters we use here were fitted
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Figure 1: The meson mass (top) and decay constant (bottom) as function of the basis truncation Nmax

with nx = nk = 2Nmax (open and closed circles) and with nx = 192 and nk = 96 (plusses and crosses), and
experimental values from Ref. [7] (open and closed green squares).

2



P
o
S
(
L
C
2
0
1
9
)
0
0
7

On the light-front wave functions of quarkonia Pieter Maris

in Ref. [2] at Nmax = Lmax = 32 and nx = nk = 64 to the lowest 14 and 8 states of bottomonium
and charmonium respectively. Note that as we increase Nmax while keeping nx and nk fixed, the
obtained masses decrease monotonically, in agreement with the variational principle.

On the other hand, the obtained decay constants seem to be (almost) independent of nx and
nk, but they depend strongly on the basis truncation parameter Nmax. This suggest that the decay
constants (in contrast to the masses) are sensitive to the high-momentum behavior of the LFWF.
Indeed, it is known from e.g. the covariant Dyson–Schwinger approach that the integral for the
pseudoscalar decay constant over the Bethe–Salpeter amplitude χPS(k,P)

fPS =
Z2

m2
PS

∫ d4k
(2π)4 Tr[χPS(k,P)γ5/P] (2.1)

is potentially divergent. This divergence is absorbed by the wave function renormalization constant
Z2, rendering a finite result for the physical decay constants [8]. In Ref. [2] we have therefore
truncated the corresponding integral in the transverse direction of the light-front formalism

fPS =
√

2Nc

∫ 1

0

dx√
x(1− x)

∫
µ d2k⊥
(2π)3 ψ↑↓−↓↑(~k⊥,x) (2.2)

at an appropriate UV mass scale µ ≈ 1.7mq. In order to address the question of the convergence of
the decay constant, we now turn our attention to the asymptotic behavior of the LFWFs.

2.2 Asymptotics of Light-Front wave functions

Understanding the ultraviolet (UV) asymptotics of the LFWF as k⊥ → ∞ is crucial for the
proper evaluation (with consistent regularization and renormalization as necessary) of observables
such as decay constants and elastic and transition form factors. The infrared behavior of the LFWF
is dominated by our model for the confining interaction as well as the behavior of the running
coupling at small momenta Q2. On the other hand, we expect the UV behavior to be dominated by
perturbative QCD, and in particular the large-Q2 behavior of the one-gluon exchange.

Within our finite basis calculations, the asymptotics can only be well-represented up to the
effective UV truncation scale, Λ = κ

√
x(1− x)Nmax, in our transverse basis functions. Indeed,
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Figure 2: Dominant component ψ↑↓−↓↑(k⊥,x) of the LFWF for ηb (left) and ηc (right) as function of k⊥ at
x = 1

2 on a log-log scale. The vertical dashed lines indicate the UV truncation scale Λ defined in the text.
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On the light-front wave functions of quarkonia Pieter Maris

Fig. 2 shows that below this scale Λ, the LFWFs of the ηb and ηc are (almost) independent of
the truncation parameter Nmax, but for k⊥ > Λ the LFWF starts to oscillate and falls off like a
gaussian, as one would expect. For the vector mesons we obtain the same asymptotic behavior. Our
calculations suggest that the LFWFs fall off like 1/k3

⊥ or even faster (possibly with a logarithmic
correction), but an expansion in HO basis functions in the transverse direction is far from the ideal
computational method for an accurate determination of the asymptotic behavior of the LFWFs.

2.3 Asymptotics of the transverse Distribution Amplitude

Analogous to the (longitudinal) Distribution Amplitudes, which are obtained from the LFWF
by integrating over the transverse momenta, one can define Transerse Distribution Amplitudes
(TDA) by integrating over x

φ⊥(~k⊥) =
√

2Nc

∫ 1

0

dx√
x(1− x)

ψ↑↓−↓↑(~k⊥,x) , (2.3)

normalized here such that the integral over~k⊥ gives the decay constant

fPS =
∫ d2~k⊥

(2π)3 φ⊥(~k⊥) . (2.4)

The left panel of Fig. 3 shows φ⊥(k⊥) of ηb for several different basis truncation parameters Nmax.
This shows good convergence up to a scale proportional to

√
Nmax. This figure clearly shows that

the TDA in this model falls off faster than 1/k2
⊥. Our best fit for the asymptotic behavior is

k⊥ φ⊥(~k⊥) ∼ e−ck⊥ , (2.5)

which suggests that the integral for the decay constant is finite, even in the limit of a complete
basis. As indicated before, we may need alternative computational tools to accurately determine the
asymptotic behavior of the TDA, and whether this behavior follows from the one-gluon exchange,
or from the one-gluon exchange in combination with our specific model for the transverse and
longitudinal confinement.
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Figure 3: Transverse DA for ηb (left) and extrapolation of the decay constants (right).
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On the light-front wave functions of quarkonia Pieter Maris

Inspired by this behavior, we extrapolate the decay constants by a fit of our finite basis results

f (Nmax) = f (Nmax = ∞)+ae−c
√

Nmax , (2.6)

as is shown in the right panel of Fig. 3 for the ηb and ϒ. This extrapolation also works quite well
for the decay constants of the ηc, J/Ψ, and Bc. Of course, these extrapolated decay constants are
significantly larger than those reported in Refs. [2, 9], which were truncated at a finite scale.

3. LFWF of unequal-mass heavy mesons

For equal-mass constituents, the LFWF ψ(~k⊥,x) has its maximum value at x= 1
2 for all k⊥, but

for systems with valence quarks of unequal masses such as Bc, this is not the case. Nonperturba-
tively, one expects this maximum to occur at mQ

mQ+mq
; however, the left panel of Fig. 4 clearly shows

that this maximum depends on k⊥. At k⊥ = 0, the peak-position (indicated by an open circle) is at
x > mb

mb+mc
, but for increasing k⊥, this maximum occurs at lower values of x. In the limit k⊥→ ∞

the effect of the unequal masses becomes negligible, and the maximum position approaches x = 1
2 .

With the LFWF interpreted as the probability amplitude, its peak coincides with the maximum
of the probability distribution for finding the system with in a given momentum configuration. This
momentum-space probability density can be alternatively calculated using the light-front parton gas
model [10]. Specifically, the joint probability distribution in k⊥ and x is given by

ρ(k⊥,x) ∼ δ

(
k2
⊥+m2

Q

x
+

k2
⊥+m2

q

1− x
−u

)
, (3.1)

where the quantity u is the available thermal energy for the relative motion of the valence quarks,
after averaging interactions other than the light-front kinetic energy. The parameters mQ and mq

need not to be identical to those in the light-front Hamiltonian because of this averaging – one can
think of these parameters as ‘effective masses’.

Notice that with fixed x, the peak of the distribution always locates at k⊥ = 0. The peak of the
LFWF with fixed k⊥ is given by the x which makes the partial derivative of Eq. (3.1) with respect
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5



P
o
S
(
L
C
2
0
1
9
)
0
0
7

On the light-front wave functions of quarkonia Pieter Maris

to x vanish. The derivative of the δ -function can be understood by approximating it with a narrow
gaussian function. Explicitly, we obtain for the peak-location in x at fixed k⊥

x =

(
1+

√
k2
⊥+m2

q

k2
⊥+m2

Q

)−1

, (3.2)

which indeed describes the peak-position in our model, see the right panel of Fig. 4, with the same
effective masses mQ and mq for the lowest pseusoscalar and vector states. As a consequence, dif-
ferent light-front observables such as the Distribution Amplitude (DA) and the Parton Distribution
Function (PDF) have their maximum at different values of x. This effect is more pronounced as the
mass difference between the quarks becomes larger [11].
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