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We review recent ATLAS measurements of neutral electroweak boson pair production in 13 TeV
proton-proton collisions at the LHC, inclusive with respect to any associated hadronic jet activity.
The measured integrated and differential cross sections are compared to state-of-the-art theoret-
ical predictions. The agreement is generally good, with some interesting small deviating trends.
Some of the measurements are used to search for high-mass new physics effects in an effective
anomalous triple gauge coupling approach. No new physics is observed and constraints on the
coefficients of the considered anomalous coupling operators are obtained.
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1. Introduction and motivation

ATLAS [1, 2] measurements of neutral diboson production at the LHC [3] probe part of the
electroweak sector of the Standard Model (SM), governed by an SU(2)L × U(1)Y gauge symmetry.
Apparent deviations from this gauge structure in the measurements could be traced back to physics
beyond the Standard Model. This is done by parametrising new physics by effective anomalous
triple gauge couplings, or by using an effective field theory where new physics at a higher scale is
treated as having no dynamics at the experimentally reached energies, but modifying the effective
couplings between dynamical SM fields. The production of dibosons is a particularly important
test of the SM electroweak symmetry breaking mechanism, because it is rendered finite at high
energy scales by the presence of the Higgs boson.

Throughout this article, lepton (`) refers to an electron or a muon, i.e. the types of lepton that
can be observed undecayed in ATLAS. We present the following measurements:

• Z(∗)/γ
∗ Z(∗)/γ

∗ → `+`−`′+`′− [4], across a wide range of the four-lepton invariant mass,
which is also the main observable of interest. The presence of the photon, Z boson (pro-
duced singly or in pairs), and the Higgs boson is apparent. Several interpretations of the
measurement in terms of SM parameters and searches for new physics are performed.
• ZZ→ `+`−νν̄ [5]: integrated and differential cross sections are presented along with a search

for anomalous triple gauge couplings.
• Zγ → νν̄γ [6]: differential cross sections are presented along with a search for anomalous

triple gauge couplings.
• Zγ → `+`−γ [7]: differential cross sections are presented.

Each measurement uses 36 fb−1 of proton-proton collision data, except for the Zγ → `+`−γ mea-
surement, which uses the full ATLAS Run 2 dataset of 139 fb−1. The measurements are inclusive
with respect to associated jets, as opposed to e.g. dedicated measurements of vector boson scat-
tering, in which the use of jets is crucial to identify the signal. To limit model dependence in the
measurements, the cross sections are corrected to fiducial phase spaces defined in terms of sta-
ble1 particles. The fiducial phase spaces reflect the acceptance of the detector and the analysis
requirements applied to reduce background. This way, model-dependent extrapolation outside of
the experimentally accessible phase space is largely avoided.

The experimental results are compared to theoretical predictions in NNLO QCD (and some-
times NLO QCD) from Matrix [8, 9] and MCFM [10–13], NLO QCD predictions matched with a
parton shower from Powheg [14–18] and Sherpa [19–24] (which merges various final-state parton
multiplicities), loop-induced processes in LO QCD from GG2VV [25, 26], NLO QCD corrections
to loop-induced processes computed in Refs. [27, 28], and NLO electroweak corrections from the
calculation in Refs. [29, 30].

2. Z(∗)/γ
∗ Z(∗)/γ

∗→ `+`−`′+`′−

The four-lepton measurement [4] is very inclusive and therefore exhibits sensitivity to various
production mechanisms. These are visible in Figure 1(a), showing the reconstructed event yields as

1Here, stable means that they have a lifetime long enough to be detected by ATLAS before decaying.
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a function of the four-lepton mass along with predictions for the various contributing subprocesses.
The high lepton multiplicity means that the background due to misidentified leptons is very small,
allowing the use of loose lepton identification [31, 32] and a low pT > 7 GeV requirement. The
backgrounds due to other SM processes are also very small. The Z and Higgs-boson peaks are
visible around 91 GeV and 125 GeV. Above around 180 GeV, the production of two on-shell Z
bosons contributes, causing a sharp increase and subsequent downward slope of the cross section.

Figure 1(b) shows the differential cross section after background subtraction and unfolding.
It is compared to various theoretical predictions, including a fixed-order NNLO QCD prediction.
Overall, the agreement is good, except in the region in and around the Higgs boson peak, where
NNLO QCD predicts too low a cross section. This is understood, since large higher-order correc-
tions to the loop-induced Higgs boson production are missing here. The different relative contri-
bution of (anti)quark and gluon-initiated subprocesses apparent in Figure 1(a) make it clear that
an — albeit model-dependent — measurement of the gg→ `+`−`′+`′− contribution relative to the
prediction, µgg, is feasible. This is interesting because of the large dependence of this process’
predictions on QCD scale variations. The fitted gg→ `+`−`′+`′− production strength is found to
be µgg = 1.3± 0.5 (expected: 1.0± 0.4) with respect to the NLO prediction. With respect to the
LO prediction, the fitted value is µgg = 2.7±0.9. This clearly shows that the data are much more
compatible with the NLO prediction.
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Figure 1: (a) Reconstructed yields, and (b) differential cross section as a function of the four-lepton invariant
mass. Taken from Ref. [4].

Figure 2 shows the double-differential cross section as a function of both the four-lepton mass
and a matrix-element discriminant DME designed to identify “more (s-channel) Higgs-boson-like”
events. These are in the lower panels, while the upper ones show “less (s-channel) Higgs-boson-
like” events. The double-differential cross section in Figure 2 is used to constrain the off-shell
Higgs-boson production cross section in the region m4` > 180 GeV. An upper limit of 6.5 times
the SM prediction is found at the 95% confidence level. At the same confidence level, the one-
standard-deviation range of the expected value is [4.2,7.2]. The dedicated ATLAS measurement
of off-shell Higgs boson production achieved a somewhat tighter upper limit of 4.5 times the SM
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prediction [33].
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Figure 2: Double-differential cross section as a function of the four-lepton invariant mass and the matrix-
element discriminant described in the text. Taken from Ref. [4].

3. ZZ→ `+`−νν̄

The measurement of ZZ production in the `+`−νν̄ channel [5] benefits from a branching ratio
that is around three times higher than that of the four-lepton channel [4, 34]. Exactly two same-
flavour opposite-charge leptons with pT > 30 GeV and pT > 20 GeV, respectively, passing medium
identification are required. The missing transverse energy is required to be Emiss

T > 110 GeV. The
background is considerably larger than in the four-lepton channel. Around 70% of the background
are from partially identified WZ → `′ν`+`− events. The shapes of this background contribution
are taken from simulation, while its normalisation is fitted to data in a control region containing
three leptons. Background from Z→ `+`− as well as background in which the dilepton is produced
non-resonantly (such as WW → `+`−νν̄) is greatly reduced by requiring the angular distance of
the leptons to be ∆R`+`− < 1.9. Background from tt̄ production is suppressed by vetoing events
containing a b-tagged jet.

The integrated fiducial cross sections are shown in Table 1 along with predictions. Also shown
is the cross section after extrapolation to the entire ZZ phase space with dilepton masses between
66 GeV and 116 GeV. This number is in agreement with the extrapolated cross section measured
in the ZZ → `+`−`′+`′− channel, σ

tot
ZZ = 17.2± 0.9 ±0.6 (stat) ±0.4 (syst) ±0.6 (lumi) pb [34].

Differential cross sections as a function of eight different observables are measured. Two examples
are shown in Figure 3. The measurements roughly agree with the shown predictions, although
there is a hint of some differing trends. The measured cross section with respect to the transverse
momentum of the dilepton (Figure 3(b)) is used to search for new physics at high energies using
the anomalous triple gauge coupling (aTGC) approach. With no significant deviations from the
SM observed, exclusion limits are set on the parameters describing the coupling strength of the
effective aTGC vertices.
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Table 1: Integrated fiducial and extrapolated cross sections along with NNLO QCD predictions with NLO
electroweak corrections as well as NLO corrections for the gluon-initiated loop-induced production mode
applied. Taken from Ref. [5].
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Figure 3: Differential cross sections with respect to (a) the transverse mass of the ZZ → `+`−νν̄ system,
and (b) the transverse momentum of the dilepton system. Taken from Ref. [5].

4. Zγ → νν̄γ

For triggering and to suppress background, the Zγ → νν̄γ analysis [6] puts high require-
ments on the photon transverse energy, Eγ

T > 150 GeV, and the missing transverse energy, Emiss
T >

150 GeV. A high Emiss
T significance of Emiss

T /
√

∑jets pjet
T +Eγ

T > 10.5 GeV1/2 helps reduce back-

ground with mismeasured Emiss
T and a veto on electrons and muons suppresses backgrounds such as

W + jets. Sophisticated data-driven background estimation is used. Background from hadronic jets
misidentified as photons is fitted to data in a two-dimensional sideband with inverted photon iden-
tification and/or photon isolation. Background with electrons misidentified as photons is obtained
by measuring misidentification rates in Z → data and applying them to W → ν events to get the
background estimate. Finally, background with a genuine photon and a W boson passing the lepton
veto (particularly in the channel W (→ τν) is normalised to a fit in data control regions with one
lepton and a small Emiss

T significance, significantly reducing its systematic uncertainty compared to
a similar analysis at 8 TeV [35].

Differential fiducial cross sections are measured both without and with jet veto (vetoing jets
with pT > 50 GeV and |η | < 4.5). The latter selection has a higher signal purity, at the expense
of signal acceptance. The differential cross section with respect to the photon ET in both regions
is shown in Figure 4 and found to agree with NNLO QCD as well as multijet-merged NLO QCD
predictions (the deviation in the highest bin in Figure 4(a) is found to not be statistically significant).
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Figure 4: Transverse energy of the photon in the region (a) without a jet veto, and (b) with a jet veto. Taken
from Ref. [6].

The highest bin of the photon ET distribution in the jet-veto region is used to set the world’s
tightest exclusion limits on the aTGC parameters governing the ZZγ and Zγγ couplings. Only CP-
conserving couplings are considered, but the limits for the corresponding CP-violating ones are
very similar. Examples of limit ellipses are shown in Figure 5.
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Figure 5: Exclusion limits on CP-conserving anomalous (a) Zγγ , and (b) ZZγ coupling parameters. Only
the pair of parameters shown in each figure is varied simultaneously, the remaining ones are set to the SM
value, i.e. zero. Taken from Ref. [6].

5. Zγ → `+`−γ

Due to the presence of two leptons, required to have pT > 30 GeV and pT > 25 GeV, the
Zγ → `+`−γ measurement [7] only requires the photon to have ET > 30 GeV — five times lower
than was necessary in the Zγ → νν̄γ analysis [6]. To ensure that the measurement is dominated
by events in which the photon is radiated by an initial-state quark rather than a lepton from the Z
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decay, the mass requirement m``+m``γ > 182 GeV is imposed. The dominant background is due to
jets misidentified as photons. This background is determined using a data-driven sideband method
and found to be around 10% of the total expected yield. Pileup background, where the photon
and the Z → `+`− are produced in independent collisions in the same proton bunch crossing, is
estimated by a fit to the zγ − zvertex distribution (where z is the longitudinal coordinate, i.e. along
the beam direction). It is found to be around 2% of the total expected yield.

Differential cross sections as a function of four observables are measured, including the mass
of the ``γ system, which is not measurable in the Zγ → νν̄γ analysis. This distribution as well as
that of the photon transverse energy is shown in Figure 6. Of the fixed-order predictions shown in
the figure, the NNLO QCD calculation agrees substantially better with the data than the NLO QCD
calculation, although the difference is mainly in normalisation.
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Figure 6: Differential cross section as a function of (a) the mass of the ``γ system, and (b) the photon
transverse energy, compared to fixed-order predictions. Taken from Ref. [7].

6. Discussion

Recent ATLAS measurements of inclusive neutral diboson production in 13 TeV proton-proton
collisions at the LHC are presented. Several differential cross sections were measured in fiducial
regions and show overall agreement with NLO (in some cases jet-multiplicity merged) parton-
showered predictions as well as fixed-order NNLO QCD predictions. Various interpretations of
the analyses in terms of SM parameters and exclusion limits on neutral aTGCs are performed.
The presented analyses highlight the complementarity of studying the Z → νν̄ and Z → `+`−

channels. The former, having a larger branching fraction, are more sensitive to new physics effects
at high energy scales (which may be treated in an aTGC effective approach). The latter allow
full reconstruction of the final state and looser kinematic requirements, making them excellent for
measuring cross sections across a very inclusive phase space. The measurements using 36 fb−1

of data are statistically limited, meaning that these measurements will benefit from analysis of
the full 139 fb−1 collected by ATLAS in LHC Run 2. In the Zγ → `+`−γ measurement with
139 fb−1, the systematic uncertainty dominates over the statistical one in more than half of the
bins. The collection of more data as well as future theoretical progress — e.g. the calculation of
mixed electroweak and QCD corrections — promise exciting opportunities for new precision tests
of the SM with high sensitivity to new physics.
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