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Recently there has been renewed interest in using tensor products of division algebras, together
with their associated Clifford algebras, to identify the structures of the Standard Model. One full
generations of leptons and quarks transforming correctly under the electrocolor group SU(3)c⊗
U(1)em can be described in terms of complex octonion algebra C⊗O. By going beyond the
division algebras, and considering the larger Cayley-Dickson algebra of sedenions S, this one
generation model is extended to exactly three generations. Each generation is contained in an
C⊗O subalgebra of C⊗S, however these three subalgebras are not independent of one another.
This three generation model can be related to an alternative model of three generations based on
the exceptional Jordan algebra J3(O). It is speculated that the shared C⊗H algebra common to
all three generations might form a basis for CKM mixing.
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1. Introduction

The establishment of the Standard Model (SM) as a description of the structure of particles
and their interactions has been one of the great achievements in theoretical physics. However,
despite the model’s overwhelming success, its underlying mathematical structure is not derived
from more fundamental principles. Finding a theoretical basis for the mathematical structure that
underlies the SM remains a prominent challenge in physics. Instead of the common approach
of embedding the SM gauge group into some larger group, recently there has been an interest in
using the fundamental and generative structures of the four normed division algebras as a simple
mathematical framework for particle physics [1, 2, 3, 4, 5, 6, 7, 8].

There are only four normed division algebras; the reals R, complex numbers C, quaternions
H, and the octonions O. In [2] one full generations of leptons and quarks transforming correctly
under the electrocolor group SU(3)c⊗U(1)em is found starting from the complex octonion algebra
C⊗O (itself not a division algebra). That work builds on initial results from the 1970s relating the
octonions to the symmetries of (one generation of) quarks 1970s [9].

One prominent open question in the division algebra program is how to extend the many
results from a single generation to exactly three generations. In this short paper some recent results
are reviewed which show that by going beyond the division algebras, and including the Cayley-
Dickson algebra of sedenions S, it is possible to extend the one generation results of [2] to exactly
three generations in a very natural way [10]. Some ongoing research and speculations relating to
this approach are then discussed.

2. Three generations from complex sedenions

Although the algebra of complex octonions C⊗O is nonassociative, its left adjoint algebra
(C⊗O)L generated via the left adjoint actions of the algebra on itself is associative, and isomorphic
to the complex Clifford algebra C`(6). In [2] it was shown that a Witt decomposition of (C⊗O)L∼=
C`(6) decomposes (C⊗O)L into minimal left ideals whose basis states transform as a single
generation of leptons and quarks under the unbroken electrocolor SU(3)c⊗U(1)em

1.
The octonions O are spanned by the identity 1 = e0 and seven anti-commuting square roots of

minus one ei satisfying

eie j =−δi je0 + εi jkek, where eie0 = e0ei = ei, e2
0 = e0, (2.1)

and εi jk is a completely antisymmetric tensor with value +1 when i jk = 124, 156, 137, 235,
267, 346, 457. By selecting e7 as a special direction, a split basis of nilpotents can be defined
as2

α1 ≡
1
2
(−e5 + ie4), α2 ≡

1
2
(−e3 + ie1), α3 ≡

1
2
(−e6 + ie2), (2.2)

α
†
1 ≡

1
2
(e5 + ie4), α

†
2 ≡

1
2
(e3 + ie1), α

†
3 ≡

1
2
(e6 + ie2), (2.3)

1It is worth mentioning that a similar approach, using C`(6) as a starting point, was concurrently developed in [11],
which is also consistent with [1]. Those works include a copy of the quaternion algebra, recovering the full SM gauge
group from the algebra T = R⊗C⊗H⊗O. The quaternionic factor in T is responsible for the broken SU(2) chiral
symmetry.

2following the convention of [2].
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satisfying the anticommutator algebra of fermionic ladder operators{
α

†
i ,α

†
j

}
=
{

αi,α j
}
= 0,

{
α

†
i ,α j

}
= δi j. (2.4)

Considering the basis vectors as elements of the left adjoint algebra (C⊗O)L ∼= C`(6), allows for
the construction of a primitive idempotent ωω† = α1α2α3α

†
3 α

†
2 α

†
1 which defines a minimal left

ideal Su ≡ C`(6)ωω†. Explicitly:

Su ≡
νωω

† +

d̄r
α

†
1 ωω

† + d̄g
α

†
2 ωω

† + d̄b
α

†
3 ωω

†

ur
α

†
3 α

†
2 ωω

† + ug
α

†
1 α

†
3 ωω

† +ub
α

†
2 α

†
1 ωω

†

+ e+α
†
3 α

†
2 α

†
1 ωω

†, (2.5)

where ν , d̄r etc. are suggestively labeled complex coefficients denoting the isospin-up elementary
fermions. The conjugate system analogously gives a second linearly independent minimal left ideal
of isospin-down elementary fermions. These representations of the minimal left ideals are invariant
under the electrocolor symmetry SU(3)c⊗U(1)em, with each basis state in the ideals transforming
as a specific lepton or quark as indicated by their suggestively labeled complex coefficients.

One way of extending this model from a single generation to exactly three generations is to
go beyond the division algebras, and consider the next Cayley-Dickson algebra after the octonions
[10]. This is the algebra of sedenions S. The sedenions S are spanned by the identity 1 = e0

and seven anti-commuting square roots of minus one ei satisfying the multiplication table given in
Appecndix A of [10]. This larger algebra also generates a larger left adjoint algebra (C⊗S)L ∼=
C`(8). A decomposition of (C⊗S)L naturally extends the above construction of a single generation
to exactly three generations.

Selecting e15 as a special imaginary unit (in the same way that e7 is selected as a special
imaginary unit in the octonion case), this time one can define a basis of seven nilpotents ηi, i =
1,2, ...,7 of the form 1

2(−ea + ie15−a) where a ∈ 5,7,13,1,4,6,12, together with seven nilpotent
conjugates η

†
i of the form 1

2(ea + ie15−a), satisfying{
η

†
i ,η

†
j

}
=
{

ηi,η j
}
= 0,

{
η

†
i ,η j

}
= δi j. (2.6)

These ηi and η
†
i uniquely divide into three intersecting sets

α1 =
1
2
(−e5 + ie10), β1 =

1
2
(−e7 + ie8), γ1 =

1
2
(−e13 + ie2), (2.7)

α2 = β2 = γ2 =
1
2
(−e1 + ie14), (2.8)

α3 =
1
2
(−e4 + ie11), β3 =

1
2
(−e6 + ie9), γ3 =

1
2
(−e12 + ie3), (2.9)

together with their conjugates. The sets {α†
i ,αi}, {β †

i ,βi}, and {γ†
i ,γi} each individually form a

split basis for C⊗O and satisfy algebra (2.4). That is, selecting e15 as the special unit imaginary
singles out three intersecting octonionic subalgebras. This allows us to describe three generations
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of leptons and quarks with unbroken SU(3)c⊗U(1)em symmetry. These three C⊗O subalgebras
are not independent but share a common quaternionic subalgebra spanned by {1,e1,e14,e15}. The
three intersecting octonion subalgebras together with the multiplication rules of their base elements
may be represented by the three Fano planes in Figure 1. Each of the three octonionic subalgebras

Figure 1: Fano planes of three octonionic subalgebras in the sedenions.

above generates via its adjoint left actions a copy of C`(6). From each of these algebras one
constructs SU(3)c and U(1)em generators as above. That is, each generation has its own copy of
SU(3)c and U(1)em associated with it.

2.1 Spinorial degrees of freedom

The spinorial degrees of freedom and the weak force are not captured by C⊗O nor by C⊗S.
There are several ways to include these additional degrees of freedom. In [2] they are added by
including a copy of the complex quaternions C⊗H, for an overall model based on C⊗H⊗O (as
in [1]). The left adjoint algebra in this case is (C⊗H⊗O)L = C`(8), the same as the left adjoint
algebra of C⊗S. In [11] on the other hand, all the degrees of freedom are included by considering
all eight minimal left ideals of C`(6), instead of just two as in [2, 10]. An alternative way of
describing the full degrees of freedom is to therefore consider all 16 minimal left ideals of C`(8).

Including a copy of the quaternions into the sedenion model would enlarge the left adjoint
algebra to (C⊗H⊗S)L ∼= C`10. Associated with this algebra is the group Spin(10), which forms
the basis of the SO(10) grand unified theory. It is however not clear why a copy of the octonions
is missing in this case. Including a copy of the octonions, one gets (C⊗H⊗O⊗S)L ∼= C`(16),
which contains the e8⊕ e8 algebra of the anomoly free 10D heterotic string [12].

3. The intersectionality of three generations as a basis for CKM mixing

The three Fano planes in Figure 1 share a common complex quaternionic line of intersection.
This reflects the fact that the three generations in the sedenion model are not independent of one
another. This leads to unphysical transformations between generations not observed in nature such
as [

Λ
(1)
1 ,β †

1

]
= iγ3,

[
Λ
(1)
1 ,β †

3

]
= iγ1,

[
Λ
(1)
1 ,γ†

1

]
=−iβ3,

[
Λ
(1)
1 ,γ†

3

]
=−iβ1 (3.1)

where Λ
(1)
1 =−(α†

2 α1+α
†
1 α2) is the first SU(3) generator constructed from the first C⊗O subalge-

bra associated with the first generation of fermions. To eleminate these unphysical transformations
one may be able to consider linear combinations of fermion states, symmetry generators, or both.
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This at the same time may provide a basis for the CKM mixing of quarks. This is currently being
investigated.

4. Three generations from the triality of C`(8)

It was mentioned earlier that (C⊗H⊗O)L ∼= (C⊗S)L ∼= C`(8). Unlike the smaller algebra
C`(6) associated with C⊗O, this larger algebra admits a triality automorphism associated with
Spin(8). Triality is a non-linear outer automorphism of Spin(8) of order three. It would be inter-
esting to interpret this triality physically in the C⊗H⊗O and C⊗ S models. Triality has been
associated with three generations in the context of the exceptional Jordan algebra [13, 14].

5. Discussion

A considerable amount of the SM structure for a single generation of fermions can be realised
starting from C⊗O and its left adjoint algebra (C⊗O)L ∼=C`(6). Since describing a single gener-
ation requires one copy of the octonions, it seems reasonable to expect a three generation model to
require three copies of the octonions. Extending from C⊗O to C⊗S one can generalize the results
from a single generation to exactly three, with each generation living in a C⊗O subalgebra C⊗S.
One finds that the three generations are not independent of one another but all three generations
share a common C⊗H subalgebra. This intersectionality of three generations may provide a basis
for including CKM quark mixing into the model.

The exceptional Jordan algebra J3(O) also contains three copies of the octonions, making this
algebra another natural candidate to describe three generations [13, 14, 15]. There one likewise
finds that the three generations are not truly independent of one another, but rather each genera-
tion corresponds to one of three canonical J2(O) subalgebras of J3(O) [14]. One expects a close
relationship between the approach based on (C⊗S)L and three generation models based on J3(O).
Indeed each Fano plane in Figure 1 gives the projective geometry of the octonionic projective plane
OP2 [16], which is the quantum state space upon which the exceptional Jordan algebra J3(O) acts
[17].

The automorphism group of the octonions is the exceptional Lie group G2. For the sedenions
one finds that Aut(S) = Aut(O)× S3. The only difference between the octonion and sedenion
automorphism groups is a factor of the permutation group S3. This permutation group can be
constructed from the triality automorphism of Spin(8) [18]. The fundamental symmetries of S are
the same as those of O, although the factor of S3 suggests one obtains three copies. For higher
Cayley-Dickson (n > 3) algebras Aut(An) = Aut(O)× (n− 3)S3, indicating the higher Cayley-
Dickson algebras only add additional trialities, and perhaps no new fundamental physics should be
expected beyond C⊗S.
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