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With the experimental observation of several credible aatds for multiquark hadrons, the latter
states re-entered the focus of interest of theoreticahgtinteraction physics. Proper treatment of
hadronic bound states by quantum chromodynamics, QCD pidwetgm field theory governing all
strong interactions, necessitates a nonperturbativ@appr A well-established framework of this
kind is provided by QCD sum rules relating hadron featurélségarameters of QCD. Conceptual
reconsideration, however, reveals that, in order to readjch the peculiarities of multiquarks, the
long-standing conventional QCD sum-rule techniques etlgenust be subjected to considerable
modification. The so far overlooked necessity for such atapts is most easily demonstrated for
the case of least complexity, that s, for tetraquarks, b@tates of two quarks and two antiquarks.
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1. Preliminaries: Setting the Theater of Multiquark QCD Sum-Rule Consider ations

The quantum field theory of strong interactiogeantum chromodynamicsnables as possible
(colour-singlet) bound states of quarks and gluons notjuatk—antiquark mesons and three-quark
baryons, usually subsumed by the notion ordinary hadranslsomultiquarkhadrons, sometimes
dubbed exotic. For the latter species, we seek trustworhgrghtions by means of QCD sum rules.

QCD sum rule$1] constitute a nonperturbative approach to bound stdtgsarks and gluons,
the basic degrees of freedom of QCD, in form of analytic retest between observable properties of
hadrons, on the one hand, and the parameters of QCD, iamgstoupling and quark masses, on the
other hand. Usually, they are distilled by evaluation ofelation functions of hadroimterpolating
operatorsdefined in terms of quark and gluon fields at bpllenomenologicghadronic) andQCD
levels: by insertion of a complete set of hadron states,asinn of nonlocal operator products into
series of local operators by use of Wilson’s fifjerator product expansigmemoval of any required
subtraction terms and suppression of the hadron contitiabove the ground state by performing
Borel transformations, and relying on the assumption thataturbative QCD contributions above
Borel-variable governed [3—gffective thresholdsancel against hadron continuum. At QCD level,
the relationships receive both purely perturbative cbatrons, conveniently represented in form of
dispersion integrals of spectral densities, and nongeative contributions involving QCD vacuum
condensates multiplied by powers of Borel variables anatbes being dubbed power corrections.

Before adopting QCD sum-rule techniques for extractingrimiation on the basic properties of
multiquark states, such as tetraquarks and pentaquarkssgues have to be settled: an, or even the
most, suitable choice of interpolating operators and thmfidation of a selection criterion ensuring
an unambiguous identification of all relevant QCD contiitms to the correlators considered [6,7].

In terms of quark flavour quantum number$, c,d € {u,d,s,c,b}, a tetraquark is a mesonic
bound stat€0, 7. qq) of two quarksyy, q¢ and two antiquarkg,, 7., with massesn,, my, me, my.
Thecolourdegree of freedom of the (anti-) quarks, transforming atiogrto the three-dimensional
(anti-) fundamental representation of the gauge grou8puhderlying QCD, does not matter for a
trivial reason. Labelling each representation by its disi@m, one notices the appearance of merely
two SU(3) singlet representations in the tensor product of two 3 andtrepresentations of 3B):

30333=81=1919384848®8® 104104 27.

Itis easy to demonstrate that, irrespective of the routevi@d in the formation of each of these two
colour singlets in intermediate steps, by application efEtransformations the arising operators of
two-quark—two-antiquark form can be recast into the shégravn sums of products of colourless
guark—antiquark bilinear operators. In view of these oleérns, for the construction of tetraquark
interpolating operators it suffices to utilize, as localdimg blocks,colour-singletquark—antiquark
bilinear currents of (if suppressing possible but for tHefeing irrelevant Dirac structures) generic
shapejap(X) =04(X) db(X). With these, no more than only twetraquark interpolating operatorsf
current—current form are conceivable, naméid (X) = jap(X) jed (X) @aNdBaden(X) = jad (X) job(X).

Since the quark content of a tetraquark may likewise (orgpaddly) form two ordinary mesons,
we use sharp blades. Presumptive QCD support of a tetrapabrks calledetraquark-phile[8,9]:

The set of all tetraquark-phile Feynman diagrams is sttioglardly characterized [6]
by the behaviour of each member as function of the apprepki@ndelstam variable
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any member has to depend nonpolynomially, i.e., nonttwiah sand to enable one or

more genuine four-quark intermediate states by exhibhiiagich cuts (the existence of
which can be verified by reverting on Landau’s equations)[4@]rting at branch points

defined by the masses of the bound-state constituentstises, (mg + My, + M+ mg)?2.

2. Brief Line of Argument: Tetraquark Characteristics from Two-Point Correlators

Given atetraquarl, we intend to derive its basic features, i.e., its msnd decay constants
facd = (0/6apea| T)  @nd  fageh = (0Baden|T) ,

from its pole contributions to two-point correlators of appriate operatord, by formulating QCD
sum rules which take into account the nonconventional eattimultiquarks [11]. For definiteness,
let us sketch our reasoning for the case of tetraquarksvimgpfour different quark flavours. There,
we better discriminate two types of contributions to thestgtiark poles, namely, flavour-preserving
and flavour-rearranging ones, emerging from adopting tterpolating operators of either equal or
unequal quark flavour distributions. When evaluating soaneetator at QCD level, its perturbative
contributions will emerge in form of series expansions iwers of the strong couplings = g2/4.
Figure 1 recalls the quark-bilinear originfitdivour-retainingcorrelators at lowest orders af.
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Figure1: Flavour-preserving Feynman diagrams contributing ahgtrooupling orde®(ay?) (a),0(as) (b),
andO(a?) (c) to correlators of four quark-bilinear curretdeft) as well as, by exerting configuration-space
pair contraction of quark-bilinear currerjtgo correlators of two tetraquark interpolating operath(gght).

Now, Feynman diagrams of order less ti@(m2) donotcomply with the criteria necessary for
deeming thentetraquark-phile Those 0fO(a?) [e.g., Fig. 1(a)] and those @i(as) [e.g., Fig. 1(b)]
with a single gluon (indicated by curly black lines) exchadgnside a quark loop contribute only to
two ordinary mesons. All those @(as) with a single gluon exchanged between the two, otherwise
disconnected quark loops are proportional to the definihishing traces of all S(3) generators.
Hence, only aO(a?) [e.g., Fig. 1(c)jor higherFeynman diagrams start to contribute to tetraquarks.

Feeding the QCD sum-rule machinery with the inferred catoes, without paying attention to
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multiquark peculiarities, yields relations between QC@D hadron (identified by dashed blue lines)
representations generically involving not only conneciatributions but alsaot tetraquark-phile
contributions separable (illustrated by a dot-dashedine)l into twounconnectegbortions (Fig. 2).
Each of these two unconnected portions forms, however, @@ €im rule for the correlator of two
qguark-bilinear currentg, i.e., for anordinary mesorfFig. 3): a lucky circumstance that enforces the
exact cancellatiomf all unconnected QCD and hadron contributions. That stropkervation [11],

if and only if taken into account, yields adequateéQ)CD sum-rule approach to tetraquarks (Fig. 4).
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Figure2: Diagrammatic QCD sum rules emerging from correlators oftetaquark interpolating operators
0, as a consequence of the unreflecting observance of coomahtécipes exhibiting on both QCD (left) and
hadron (right) sideanconnecte@op, separated by dot-dashed red lines) as well as corth@i#om) parts.

Figure3: Diagrammatic QCD sum rules fordinarymesons from correlators of two quark-bilinear currents
j, contributing twice (on both sides of those separatingdisthed red lines) to the unconnected part of Fig. 2.

Figure4: Diagrammatic QCD sum rules tailored to the adequate deaguipf tetraquarksby factorizing off
twice the QCD sum rules fardinarymesons of Fig. 3 from the (before never challenged) relatidirig. 2.

Figure 5 exemplifies contributions of lowest ordersriyto theflavour-reorderingcorrelator of
two not identical tetraquark currenfiformed by merging two quark bilinears: here, we cannot take
advantage of some cancellation. However, applicationeoEtindau equations [10] reveals that any
contributions of order®(a?) [Fig. 5(a)] orO(as) [Fig. 5(b)] cannot support a tetraquark pole: only
Feynman diagrams of orde&(a?2) [Fig. 5(c)] or higher may be considered as tetraquark-{{Bil€].

Following this line of argument and implementing the insgyained, one ends up witmavel
kind of QCD sum rulegailored to the requirements of tetraquark analyses,eofjéimeric shape [11]

(fanca)?exp(—M? 1) = dsexp( sr)pp( s) + power corrections
(Ma+My+me-+my )2

faved fadenexp(—M2 1) = dsexp( sr)pr( S) 4+ power corrections
(Ma+My+me-+my )2
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Figure5: Flavour-reordering Feynman diagrams contributing atgrooupling orde©(ay) (a), O(as) (b),
andO(a?) (c) to correlators of four quark-bilinear curretdeft) as well as, by exerting configuration-space
pair contraction of quark-bilinear currentgo correlators of two tetraquark interpolating operat(sght).

involving the variabler introduced by Borel transformation;dependent [3-5] effective thresholds
Sff, and spectral densitigs,  in flavour-preserving and flavour-rearranging instancesemed (as
perforce also the power corrections)dxclusively tetraquark-phileontributions to the correlators.

3. Outcome: Traditional Formulations of QCD Sum Rules Require Reconsideration

Inspired by earlier partial results [12—-16], we performekaough analysis [11] dbur-quark
singularitiesin the Mandelstam variabkdue to the possible existencetefraquark polesn Green
functions. Its outcomes give reason to question the intricensistency of investigating multiquark
hadrons by means of traditional QCD sum rules [17,18]: tliedanust be adapted to the challenge.

Insights [11] analogous to the above two-point case holdfgr, thehree-point correlatorof
one tetraquark interpolating operator and two quark-gdincurrents, generating the amplitudes for
transitions between atetraquark and two ordinary mesbststing the derivation of the associated
QCD sum rules from Feynman diagrams of the likewise tetrdgphile type exemplified by Fig. 6.

Figure6: Flavour-preserving (left) and flavour-rearranging (r)gfeynman diagrams contributing at lowest
tetraquark-phile strong-coupling ord@fa?) to correlators of four quark-bilinear currerjtand, by merging
of just a single pair of currents to correlators of one tetraquark operafiaand two quark-bilinear currenjs
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